
2. Matrix Algebra

In the study of systems of linear equations in Chapter 1, we found it convenient to manipulate the aug-
mented matrix of the system. Our aim was to reduce it to row-echelon form (using elementary row oper-
ations) and hence to write down all solutions to the system. In the present chapter we consider matrices
for their own sake. While some of the motivation comes from linear equations, it turns out that matrices
can be multiplied and added and so form an algebraic system somewhat analogous to the real numbers.
This “matrix algebra” is useful in ways that are quite different from the study of linear equations. For
example, the geometrical transformations obtained by rotating the euclidean plane about the origin can be
viewed as multiplications by certain 2×2 matrices. These “matrix transformations” are an important tool
in geometry and, in turn, the geometry provides a “picture” of the matrices. Furthermore, matrix algebra
has many other applications, some of which will be explored in this chapter. This subject is quite old and
was first studied systematically in 1858 by Arthur Cayley.1

2.1 Matrix Addition, Scalar Multiplication, and

Transposition

A rectangular array of numbers is called a matrix (the plural is matrices), and the numbers are called the
entries of the matrix. Matrices are usually denoted by uppercase letters: A, B, C, and so on. Hence,

A =

[
1 2 −1
0 5 6

]
B =

[
1 −1
0 2

]
C =




1
3
2




are matrices. Clearly matrices come in various shapes depending on the number of rows and columns.
For example, the matrix A shown has 2 rows and 3 columns. In general, a matrix with m rows and n

columns is referred to as an mmm×nnn matrix or as having size mmm×nnn. Thus matrices A, B, and C above have
sizes 2×3, 2×2, and 3×1, respectively. A matrix of size 1×n is called a row matrix, whereas one of
size m×1 is called a column matrix. Matrices of size n×n for some n are called square matrices.

Each entry of a matrix is identified by the row and column in which it lies. The rows are numbered
from the top down, and the columns are numbered from left to right. Then the (((iii,,, jjj)))-entry of a matrix is

1Arthur Cayley (1821-1895) showed his mathematical talent early and graduated from Cambridge in 1842 as senior wran-
gler. With no employment in mathematics in view, he took legal training and worked as a lawyer while continuing to do
mathematics, publishing nearly 300 papers in fourteen years. Finally, in 1863, he accepted the Sadlerian professorship in Cam-
bridge and remained there for the rest of his life, valued for his administrative and teaching skills as well as for his scholarship.
His mathematical achievements were of the first rank. In addition to originating matrix theory and the theory of determinants,
he did fundamental work in group theory, in higher-dimensional geometry, and in the theory of invariants. He was one of the
most prolific mathematicians of all time and produced 966 papers.
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the number lying simultaneously in row i and column j. For example,

The (1, 2)-entry of

[
1 −1
0 1

]
is −1.

The (2, 3)-entry of

[
1 2 −1
0 5 6

]
is 6.

A special notation is commonly used for the entries of a matrix. If A is an m× n matrix, and if the
(i, j)-entry of A is denoted as ai j, then A is displayed as follows:

A =




a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

...
...

...
am1 am2 am3 · · · amn




This is usually denoted simply as A =
[
ai j

]
. Thus ai j is the entry in row i and column j of A. For example,

a 3×4 matrix in this notation is written

A =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34




It is worth pointing out a convention regarding rows and columns: Rows are mentioned before columns.
For example:

• If a matrix has size m×n, it has m rows and n columns.

• If we speak of the (i, j)-entry of a matrix, it lies in row i and column j.

• If an entry is denoted ai j, the first subscript i refers to the row and the second subscript j to the

column in which ai j lies.

Two points (x1, y1) and (x2, y2) in the plane are equal if and only if2 they have the same coordinates,
that is x1 = x2 and y1 = y2. Similarly, two matrices A and B are called equal (written A = B) if and only if:

1. They have the same size.

2. Corresponding entries are equal.

If the entries of A and B are written in the form A =
[
ai j

]
, B =

[
bi j

]
, described earlier, then the second

condition takes the following form:

A =
[
ai j

]
=
[
bi j

]
means ai j = bi j for all i and j

2If p and q are statements, we say that p implies q if q is true whenever p is true. Then “p if and only if q” means that both
p implies q and q implies p. See Appendix B for more on this.
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Example 2.1.1

Given A =

[
a b

c d

]
, B =

[
1 2 −1
3 0 1

]
and C =

[
1 0
−1 2

]
discuss the possibility that A = B,

B =C, A =C.

Solution. A = B is impossible because A and B are of different sizes: A is 2×2 whereas B is 2×3.
Similarly, B =C is impossible. But A =C is possible provided that corresponding entries are

equal:

[
a b

c d

]
=

[
1 0
−1 2

]
means a = 1, b = 0, c =−1, and d = 2.

Matrix Addition

Definition 2.1 Matrix Addition

If A and B are matrices of the same size, their sum A+B is the matrix formed by adding
corresponding entries.

If A =
[
ai j

]
and B =

[
bi j

]
, this takes the form

A+B =
[
ai j +bi j

]

Note that addition is not defined for matrices of different sizes.

Example 2.1.2

If A =

[
2 1 3
−1 2 0

]
and B =

[
1 1 −1
2 0 6

]
, compute A+B.

Solution.

A+B =

[
2+1 1+1 3−1
−1+2 2+0 0+6

]
=

[
3 2 2
1 2 6

]

Example 2.1.3

Find a, b, and c if
[

a b c
]
+
[

c a b
]
=
[

3 2 −1
]
.

Solution. Add the matrices on the left side to obtain

[
a+ c b+a c+b

]
=
[

3 2 −1
]

Because corresponding entries must be equal, this gives three equations: a+ c = 3, b+a = 2, and
c+b =−1. Solving these yields a = 3, b =−1, c = 0.
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If A, B, and C are any matrices of the same size, then

A+B = B+A (commutative law)

A+(B+C) = (A+B)+C (associative law)

In fact, if A =
[
ai j

]
and B =

[
bi j

]
, then the (i, j)-entries of A+B and B+A are, respectively, ai j +bi j and

bi j +ai j. Since these are equal for all i and j, we get

A+B =
[

ai j +bi j

]
=
[

bi j +ai j

]
= B+A

The associative law is verified similarly.

The m×n matrix in which every entry is zero is called the m×n zero matrix and is denoted as 0 (or
0mn if it is important to emphasize the size). Hence,

0+X = X

holds for all m×n matrices X . The negative of an m×n matrix A (written −A) is defined to be the m×n

matrix obtained by multiplying each entry of A by −1. If A =
[
ai j

]
, this becomes −A =

[
−ai j

]
. Hence,

A+(−A) = 0

holds for all matrices A where, of course, 0 is the zero matrix of the same size as A.

A closely related notion is that of subtracting matrices. If A and B are two m× n matrices, their
difference A−B is defined by

A−B = A+(−B)

Note that if A =
[
ai j

]
and B =

[
bi j

]
, then

A−B =
[
ai j

]
+
[
−bi j

]
=
[
ai j−bi j

]

is the m×n matrix formed by subtracting corresponding entries.

Example 2.1.4

Let A =

[
3 −1 0
1 2 −4

]
, B =

[
1 −1 1
−2 0 6

]
, C =

[
1 0 −2
3 1 1

]
. Compute −A, A−B, and

A+B−C.

Solution.

−A =

[
−3 1 0
−1 −2 4

]

A−B =

[
3−1 −1− (−1) 0−1
1− (−2) 2−0 −4−6

]
=

[
2 0 −1
3 2 −10

]

A+B−C =

[
3+1−1 −1−1−0 0+1− (−2)
1−2−3 2+0−1 −4+6−1

]
=

[
3 −2 3
−4 1 1

]
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Example 2.1.5

Solve

[
3 2
−1 1

]
+X =

[
1 0
−1 2

]
where X is a matrix.

Solution. We solve a numerical equation a+ x = b by subtracting the number a from both sides to

obtain x = b−a. This also works for matrices. To solve

[
3 2
−1 1

]
+X =

[
1 0
−1 2

]
simply

subtract the matrix

[
3 2
−1 1

]
from both sides to get

X =

[
1 0
−1 2

]
−
[

3 2
−1 1

]
=

[
1−3 0−2

−1− (−1) 2−1

]
=

[
−2 −2

0 1

]

The reader should verify that this matrix X does indeed satisfy the original equation.

The solution in Example 2.1.5 solves the single matrix equation A+X = B directly via matrix subtrac-
tion: X = B−A. This ability to work with matrices as entities lies at the heart of matrix algebra.

It is important to note that the sizes of matrices involved in some calculations are often determined by
the context. For example, if

A+C =

[
1 3 −1
2 0 1

]

then A and C must be the same size (so that A+C makes sense), and that size must be 2×3 (so that the
sum is 2× 3). For simplicity we shall often omit reference to such facts when they are clear from the
context.

Scalar Multiplication

In gaussian elimination, multiplying a row of a matrix by a number k means multiplying every entry of
that row by k.

Definition 2.2 Matrix Scalar Multiplication

More generally, if A is any matrix and k is any number, the scalar multiple kA is the matrix
obtained from A by multiplying each entry of A by k.

If A =
[
ai j

]
, this is

kA =
[
kai j

]

Thus 1A = A and (−1)A =−A for any matrix A.

The term scalar arises here because the set of numbers from which the entries are drawn is usually
referred to as the set of scalars. We have been using real numbers as scalars, but we could equally well
have been using complex numbers.
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Example 2.1.6

If A =

[
3 −1 4
2 0 1

]
and B =

[
1 2 −1
0 3 2

]
compute 5A, 1

2B, and 3A−2B.

Solution.

5A =

[
15 −5 20
10 0 30

]
, 1

2B =

[ 1
2 1 −1

2
0 3

2 1

]

3A−2B =

[
9 −3 12
6 0 18

]
−
[

2 4 −2
0 6 4

]
=

[
7 −7 14
6 −6 14

]

If A is any matrix, note that kA is the same size as A for all scalars k. We also have

0A = 0 and k0 = 0

because the zero matrix has every entry zero. In other words, kA = 0 if either k = 0 or A = 0. The converse
of this statement is also true, as Example 2.1.7 shows.

Example 2.1.7

If kA = 0, show that either k = 0 or A = 0.

Solution. Write A =
[
ai j

]
so that kA = 0 means kai j = 0 for all i and j. If k = 0, there is nothing to

do. If k 6= 0, then kai j = 0 implies that ai j = 0 for all i and j; that is, A = 0.

For future reference, the basic properties of matrix addition and scalar multiplication are listed in
Theorem 2.1.1.

Theorem 2.1.1

Let A, B, and C denote arbitrary m×n matrices where m and n are fixed. Let k and p denote
arbitrary real numbers. Then

1. A+B = B+A.

2. A+(B+C) = (A+B)+C.

3. There is an m×n matrix 0, such that 0+A = A for each A.

4. For each A there is an m×n matrix, −A, such that A+(−A) = 0.

5. k(A+B) = kA+ kB.

6. (k+ p)A = kA+ pA.

7. (kp)A = k(pA).

8. 1A = A.
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Proof. Properties 1–4 were given previously. To check Property 5, let A =
[
ai j

]
and B =

[
bi j

]
denote

matrices of the same size. Then A+B =
[
ai j +bi j

]
, as before, so the (i, j)-entry of k(A+B) is

k(ai j +bi j) = kai j + kbi j

But this is just the (i, j)-entry of kA+ kB, and it follows that k(A+B) = kA+ kB. The other Properties
can be similarly verified; the details are left to the reader.

The Properties in Theorem 2.1.1 enable us to do calculations with matrices in much the same way that
numerical calculations are carried out. To begin, Property 2 implies that the sum

(A+B)+C = A+(B+C)

is the same no matter how it is formed and so is written as A+B+C. Similarly, the sum

A+B+C+D

is independent of how it is formed; for example, it equals both (A+B)+ (C+D) and A+[B+(C+D)].
Furthermore, property 1 ensures that, for example,

B+D+A+C = A+B+C+D

In other words, the order in which the matrices are added does not matter. A similar remark applies to
sums of five (or more) matrices.

Properties 5 and 6 in Theorem 2.1.1 are called distributive laws for scalar multiplication, and they
extend to sums of more than two terms. For example,

k(A+B−C) = kA+ kB− kC

(k+ p−m)A = kA+ pA−mA

Similar observations hold for more than three summands. These facts, together with properties 7 and
8, enable us to simplify expressions by collecting like terms, expanding, and taking common factors in
exactly the same way that algebraic expressions involving variables and real numbers are manipulated.
The following example illustrates these techniques.

Example 2.1.8

Simplify 2(A+3C)−3(2C−B)−3 [2(2A+B−4C)−4(A−2C)] where A, B, and C are all
matrices of the same size.

Solution. The reduction proceeds as though A, B, and C were variables.

2(A+3C)−3(2C−B)−3 [2(2A+B−4C)−4(A−2C)]

= 2A+6C−6C+3B−3 [4A+2B−8C−4A+8C]

= 2A+3B−3 [2B]

= 2A−3B
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Transpose of a Matrix

Many results about a matrix A involve the rows of A, and the corresponding result for columns is derived
in an analogous way, essentially by replacing the word row by the word column throughout. The following
definition is made with such applications in mind.

Definition 2.3 Transpose of a Matrix

If A is an m×n matrix, the transpose of A, written AT , is the n×m matrix whose rows are just the
columns of A in the same order.

In other words, the first row of AT is the first column of A (that is it consists of the entries of column 1 in
order). Similarly the second row of AT is the second column of A, and so on.

Example 2.1.9

Write down the transpose of each of the following matrices.

A =




1
3
2


 B =

[
5 2 6

]
C =




1 2
3 4
5 6


 D =




3 1 −1
1 3 2
−1 2 1




Solution.

AT =
[

1 3 2
]

, BT =




5
2
6


 , CT =

[
1 3 5
2 4 6

]
, and DT = D.

If A =
[
ai j

]
is a matrix, write AT =

[
bi j

]
. Then bi j is the jth element of the ith row of AT and so is the

jth element of the ith column of A. This means bi j = a ji, so the definition of AT can be stated as follows:

If A =
[
ai j

]
, then AT =

[
a ji

]
. (2.1)

This is useful in verifying the following properties of transposition.

Theorem 2.1.2

Let A and B denote matrices of the same size, and let k denote a scalar.

1. If A is an m×n matrix, then AT is an n×m matrix.

2. (AT )T = A.

3. (kA)T = kAT .

4. (A+B)T = AT +BT .
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Proof. Property 1 is part of the definition of AT , and Property 2 follows from (2.1). As to Property 3: If
A =

[
ai j

]
, then kA =

[
kai j

]
, so (2.1) gives

(kA)T =
[
ka ji

]
= k
[
a ji

]
= kAT

Finally, if B =
[
bi j

]
, then A+B =

[
ci j

]
where ci j = ai j +bi j Then (2.1) gives Property 4:

(A+B)T =
[
ci j

]T
=
[
c ji

]
=
[
a ji +b ji

]
=
[
a ji

]
+
[
b ji

]
= AT +BT

There is another useful way to think of transposition. If A =
[
ai j

]
is an m× n matrix, the elements

a11, a22, a33, . . . are called the main diagonal of A. Hence the main diagonal extends down and to the
right from the upper left corner of the matrix A; it is shaded in the following examples:




a11 a12

a21 a22

a31 a32



[

a11 a12 a13

a21 a22 a23

]


a11 a12 a13

a21 a22 a23

a31 a32 a33



[

a11

a21

]

Thus forming the transpose of a matrix A can be viewed as “flipping” A about its main diagonal, or
as “rotating” A through 180◦ about the line containing the main diagonal. This makes Property 2 in
Theorem 2.1.2 transparent.

Example 2.1.10

Solve for A if

(
2AT −3

[
1 2
−1 1

])T

=

[
2 3
−1 2

]
.

Solution. Using Theorem 2.1.2, the left side of the equation is

(
2AT −3

[
1 2
−1 1

])T

= 2
(
AT
)T −3

[
1 2
−1 1

]T

= 2A−3

[
1 −1
2 1

]

Hence the equation becomes

2A−3

[
1 −1
2 1

]
=

[
2 3
−1 2

]

Thus 2A =

[
2 3
−1 2

]
+3

[
1 −1
2 1

]
=

[
5 0
5 5

]
, so finally A = 1

2

[
5 0
5 5

]
= 5

2

[
1 0
1 1

]
.

Note that Example 2.1.10 can also be solved by first transposing both sides, then solving for AT , and so
obtaining A = (AT )T . The reader should do this.

The matrix D=

[
1 2
2 5

]
in Example 2.1.9 has the property that D=DT . Such matrices are important;

a matrix A is called symmetric if A = AT . A symmetric matrix A is necessarily square (if A is m×n, then
AT is n×m, so A=AT forces n=m). The name comes from the fact that these matrices exhibit a symmetry
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about the main diagonal. That is, entries that are directly across the main diagonal from each other are
equal.

For example,




a b c

b′ d e

c′ e′ f


 is symmetric when b = b′, c = c′, and e = e′.

Example 2.1.11

If A and B are symmetric n×n matrices, show that A+B is symmetric.

Solution. We have AT = A and BT = B, so, by Theorem 2.1.2, we have
(A+B)T = AT +BT = A+B. Hence A+B is symmetric.

Example 2.1.12

Suppose a square matrix A satisfies A = 2AT . Show that necessarily A = 0.

Solution. If we iterate the given equation, Theorem 2.1.2 gives

A = 2AT = 2
[
2AT

]T
= 2

[
2(AT )T

]
= 4A

Subtracting A from both sides gives 3A = 0, so A = 1
3(0) = 0.

Exercises for 2.1

Exercise 2.1.1 Find a, b, c, and d if

a.

[
a b

c d

]
=

[
c−3d −d

2a+d a+b

]

b.

[
a−b b− c

c−d d−a

]
= 2

[
1 1
−3 1

]

c. 3

[
a

b

]
+2

[
b

a

]
=

[
1
2

]

d.

[
a b

c d

]
=

[
b c

d a

]

Exercise 2.1.2 Compute the following:

[
3 2 1
5 1 0

]
−5

[
3 0 −2
1 −1 2

]
a.

3

[
3
−1

]
−5

[
6
2

]
+7

[
1
−1

]
b.

[
−2 1

3 2

]
−4

[
1 −2
0 −1

]
+3

[
2 −3
−1 −2

]
c.

[
3 −1 2

]
−2
[

9 3 4
]
+
[

3 11 −6
]

d.

[
1 −5 4 0
2 1 0 6

]T

e.




0 −1 2
1 0 −4
−2 4 0




T

f.

[
3 −1
2 1

]
−2

[
1 −2
1 1

]T

g.
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3

[
2 1
−1 0

]T

−2

[
1 −1
2 3

]
h.

Exercise 2.1.3 Let A =

[
2 1
0 −1

]
,

B =

[
3 −1 2
0 1 4

]
, C =

[
3 −1
2 0

]
,

D =




1 3
−1 0

1 4


, and E =

[
1 0 1
0 1 0

]
.

Compute the following (where possible).

3A−2Ba. 5Cb.

3ETc. B+Dd.

4AT −3Ce. (A+C)Tf.

2B−3Eg. A−Dh.

(B−2E)Ti.

Exercise 2.1.4 Find A if:

a. 5A−
[

1 0
2 3

]
= 3A−

[
5 2
6 1

]

b. 3A−
[

2
1

]
= 5A−2

[
3
0

]

Exercise 2.1.5 Find A in terms of B if:

A+B = 3A+2Ba. 2A−B = 5(A+2B)b.

Exercise 2.1.6 If X , Y , A, and B are matrices of the same
size, solve the following systems of equations to obtain
X and Y in terms of A and B.

5X +3Y = A

2X +Y = B

a. 4X +3Y = A

5X +4Y = B

b.

Exercise 2.1.7 Find all matrices X and Y such that:

3X−2Y =
[

3 −1
]

a. 2X −5Y =
[

1 2
]

b.

Exercise 2.1.8 Simplify the following expressions
where A, B, and C are matrices.

a. 2 [9(A−B)+7(2B−A)]
−2 [3(2B+A)−2(A+3B)−5(A+B)]

b. 5 [3(A−B+2C)−2(3C−B)−A]
+2 [3(3A−B+C)+2(B−2A)−2C]

Exercise 2.1.9 If A is any 2×2 matrix, show that:

a. A = a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+

d

[
0 0
0 1

]
for some numbers a, b, c, and d.

b. A = p

[
1 0
0 1

]
+ q

[
1 1
0 0

]
+ r

[
1 0
1 0

]
+

s

[
0 1
1 0

]
for some numbers p, q, r, and s.

Exercise 2.1.10 Let A =
[

1 1 −1
]
,

B =
[

0 1 2
]
, and C =

[
3 0 1

]
. If

rA+ sB+ tC = 0 for some scalars r, s, and t, show that
necessarily r = s = t = 0.

Exercise 2.1.11

a. If Q+A = A holds for every m×n matrix A, show
that Q = 0mn.

b. If A is an m×n matrix and A+A′= 0mn, show that
A′ =−A.

Exercise 2.1.12 If A denotes an m×n matrix, show that
A =−A if and only if A = 0.

Exercise 2.1.13 A square matrix is called a diagonal

matrix if all the entries off the main diagonal are zero. If
A and B are diagonal matrices, show that the following
matrices are also diagonal.

A+Ba. A−Bb.

kA for any number kc.

Exercise 2.1.14 In each case determine all s and t such
that the given matrix is symmetric:

[
1 s

−2 t

]
a.

[
s t

st 1

]
b.




s 2s st

t −1 s

t s2 s


c.




2 s t

2s 0 s+ t

3 3 t


d.

Exercise 2.1.15 In each case find the matrix A.

a.

(
A+3

[
1 −1 0
1 2 4

])T

=




2 1
0 5
3 8






46 Matrix Algebra

b.

(
3AT +2

[
1 0
0 2

])T

=

[
8 0
3 1

]

c.
(
2A−3

[
1 2 0

])T
= 3AT +

[
2 1 −1

]T

d.

(
2AT −5

[
1 0
−1 2

])T

= 4A−9

[
1 1
−1 0

]

Exercise 2.1.16 Let A and B be symmetric (of the same
size). Show that each of the following is symmetric.

(A−B)a. kA for any scalar kb.

Exercise 2.1.17 Show that A+AT and AAT are symmet-
ric for any square matrix A.

Exercise 2.1.18 If A is a square matrix and A = kAT

where k 6=±1, show that A = 0.

Exercise 2.1.19 In each case either show that the state-
ment is true or give an example showing it is false.

a. If A+B= A+C, then B and C have the same size.

b. If A+B = 0, then B = 0.

c. If the (3, 1)-entry of A is 5, then the (1, 3)-entry
of AT is −5.

d. A and AT have the same main diagonal for every
matrix A.

e. If B is symmetric and AT = 3B, then A = 3B.

f. If A and B are symmetric, then kA+mB is sym-
metric for any scalars k and m.

Exercise 2.1.20 A square matrix W is called skew-

symmetric if W T =−W . Let A be any square matrix.

a. Show that A−AT is skew-symmetric.

b. Find a symmetric matrix S and a skew-symmetric
matrix W such that A = S+W .

c. Show that S and W in part (b) are uniquely deter-
mined by A.

Exercise 2.1.21 If W is skew-symmetric (Exer-
cise 2.1.20), show that the entries on the main diagonal
are zero.

Exercise 2.1.22 Prove the following parts of Theo-
rem 2.1.1.

(k+ p)A = kA+ pAa. (kp)A = k(pA)b.

Exercise 2.1.23 Let A, A1, A2, . . . , An denote matrices
of the same size. Use induction on n to verify the follow-
ing extensions of properties 5 and 6 of Theorem 2.1.1.

a. k(A1 +A2 + · · ·+An) = kA1 + kA2 + · · ·+ kAn for
any number k

b. (k1 + k2 + · · ·+ kn)A = k1A+ k2A+ · · ·+ knA for
any numbers k1, k2, . . . , kn

Exercise 2.1.24 Let A be a square matrix. If A = pBT

and B = qAT for some matrix B and numbers p and q,
show that either A = 0 = B or pq = 1.
[Hint: Example 2.1.7.]
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2.2 Matrix-Vector Multiplication

Up to now we have used matrices to solve systems of linear equations by manipulating the rows of the
augmented matrix. In this section we introduce a different way of describing linear systems that makes
more use of the coefficient matrix of the system and leads to a useful way of “multiplying” matrices.

Vectors

It is a well-known fact in analytic geometry that two points in the plane with coordinates (a1, a2) and
(b1, b2) are equal if and only if a1 = b1 and a2 = b2. Moreover, a similar condition applies to points
(a1, a2, a3) in space. We extend this idea as follows.

An ordered sequence (a1, a2, . . . , an) of real numbers is called an ordered nnn-tuple. The word “or-
dered” here reflects our insistence that two ordered n-tuples are equal if and only if corresponding entries
are the same. In other words,

(a1, a2, . . . , an) = (b1, b2, . . . , bn) if and only if a1 = b1, a2 = b2, . . . , and an = bn.

Thus the ordered 2-tuples and 3-tuples are just the ordered pairs and triples familiar from geometry.

Definition 2.4 The set Rn of ordered n-tuples of real numbers

Let R denote the set of all real numbers. The set of all ordered n-tuples from R has a special
notation:

Rn denotes the set of all ordered n-tuples of real numbers.

There are two commonly used ways to denote the n-tuples in Rn: As rows (r1, r2, . . . , rn) or columns


r1

r2
...

rn


; the notation we use depends on the context. In any event they are called vectors or n-vectors and

will be denoted using bold type such as x or v. For example, an m×n matrix A will be written as a row of
columns:

A =
[

a1 a2 · · · an

]
where a j denotes column j of A for each j.

If x and y are two n-vectors in Rn, it is clear that their matrix sum x+ y is also in Rn as is the scalar
multiple kx for any real number k. We express this observation by saying that Rn is closed under addition
and scalar multiplication. In particular, all the basic properties in Theorem 2.1.1 are true of these n-vectors.
These properties are fundamental and will be used frequently below without comment. As for matrices in
general, the n×1 zero matrix is called the zero nnn-vector in Rn and, if x is an n-vector, the n-vector −x is
called the negative x.

Of course, we have already encountered these n-vectors in Section 1.3 as the solutions to systems of
linear equations with n variables. In particular we defined the notion of a linear combination of vectors
and showed that a linear combination of solutions to a homogeneous system is again a solution. Clearly, a
linear combination of n-vectors in Rn is again in Rn, a fact that we will be using.
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Matrix-Vector Multiplication

Given a system of linear equations, the left sides of the equations depend only on the coefficient matrix A

and the column x of variables, and not on the constants. This observation leads to a fundamental idea in
linear algebra: We view the left sides of the equations as the “product” Ax of the matrix A and the vector
x. This simple change of perspective leads to a completely new way of viewing linear systems—one that
is very useful and will occupy our attention throughout this book.

To motivate the definition of the “product” Ax, consider first the following system of two equations in
three variables:

ax1 + bx2 + cx3 = b1

a′x1 + b′x2 + c′x3 = b1
(2.2)

and let A =

[
a b c

a′ b′ c′

]
, x =




x1

x2

x3


, b =

[
b1

b2

]
denote the coefficient matrix, the variable matrix, and

the constant matrix, respectively. The system (2.2) can be expressed as a single vector equation
[

ax1 + bx2 + cx3

a′x1 + b′x2 + c′x3

]
=

[
b1

b2

]

which in turn can be written as follows:

x1

[
a

a′

]
+ x2

[
b

b′

]
+ x3

[
c

c′

]
=

[
b1

b2

]

Now observe that the vectors appearing on the left side are just the columns

a1 =

[
a

a′

]
, a2 =

[
b

b′

]
, and a3 =

[
c

c′

]

of the coefficient matrix A. Hence the system (2.2) takes the form

x1a1 + x2a2 + x3a3 = b (2.3)

This shows that the system (2.2) has a solution if and only if the constant matrix b is a linear combination3

of the columns of A, and that in this case the entries of the solution are the coefficients x1, x2, and x3 in
this linear combination.

Moreover, this holds in general. If A is any m×n matrix, it is often convenient to view A as a row of
columns. That is, if a1, a2, . . . , an are the columns of A, we write

A =
[

a1 a2 · · · an

]

and say that A =
[

a1 a2 · · · an

]
is given in terms of its columns.

Now consider any system of linear equations with m× n coefficient matrix A. If b is the constant

matrix of the system, and if x =




x1

x2
...

xn


 is the matrix of variables then, exactly as above, the system can

3Linear combinations were introduced in Section 1.3 to describe the solutions of homogeneous systems of linear equations.
They will be used extensively in what follows.
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be written as a single vector equation

x1a1 + x2a2 + · · ·+ xnan = b (2.4)

Example 2.2.1

Write the system





3x1 + 2x2− 4x3 = 0
x1− 3x2 + x3 = 3

x2− 5x3 =−1
in the form given in (2.4).

Solution.

x1




3
1
0


+ x2




2
−3

1


+ x3



−4

1
−5


=




0
3
−1




As mentioned above, we view the left side of (2.4) as the product of the matrix A and the vector x.
This basic idea is formalized in the following definition:

Definition 2.5 Matrix-Vector Multiplication

Let A =
[

a1 a2 · · · an

]
be an m×n matrix, written in terms of its columns a1, a2, . . . , an. If

x =




x1

x2
...

xn


 is any n-vector, the product Ax is defined to be the m-vector given by:

Ax = x1a1 + x2a2 + · · ·+ xnan

In other words, if A is m×n and x is an n-vector, the product Ax is the linear combination of the columns
of A where the coefficients are the entries of x (in order).

Note that if A is an m×n matrix, the product Ax is only defined if x is an n-vector and then the vector
Ax is an m-vector because this is true of each column a j of A. But in this case the system of linear equations
with coefficient matrix A and constant vector b takes the form of a single matrix equation

Ax = b

The following theorem combines Definition 2.5 and equation (2.4) and summarizes the above discussion.
Recall that a system of linear equations is said to be consistent if it has at least one solution.

Theorem 2.2.1

1. Every system of linear equations has the form Ax = b where A is the coefficient matrix, b is
the constant matrix, and x is the matrix of variables.

2. The system Ax = b is consistent if and only if b is a linear combination of the columns of A.
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3. If a1, a2, . . . , an are the columns of A and if x =




x1

x2
...

xn


, then x is a solution to the linear

system Ax = b if and only if x1, x2, . . . , xn are a solution of the vector equation

x1a1 + x2a2 + · · ·+ xnan = b

A system of linear equations in the form Ax = b as in (1) of Theorem 2.2.1 is said to be written in matrix

form. This is a useful way to view linear systems as we shall see.

Theorem 2.2.1 transforms the problem of solving the linear system Ax = b into the problem of ex-
pressing the constant matrix B as a linear combination of the columns of the coefficient matrix A. Such
a change in perspective is very useful because one approach or the other may be better in a particular
situation; the importance of the theorem is that there is a choice.

Example 2.2.2

If A =




2 −1 3 5
0 2 −3 1
−3 4 1 2


 and x =




2
1
0
−2


, compute Ax.

Solution. By Definition 2.5: Ax = 2




2
0
−3


+1



−1

2
4


+0




3
−3

1


−2




5
1
2


=



−7

0
−6


.

Example 2.2.3

Given columns a1, a2, a3, and a4 in R3, write 2a1−3a2 +5a3 +a4 in the form Ax where A is a
matrix and x is a vector.

Solution. Here the column of coefficients is x =




2
−3

5
1


 . Hence Definition 2.5 gives

Ax = 2a1−3a2 +5a3 +a4

where A =
[

a1 a2 a3 a4
]

is the matrix with a1, a2, a3, and a4 as its columns.
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Example 2.2.4

Let A =
[

a1 a2 a3 a4
]

be the 3×4 matrix given in terms of its columns a1 =




2
0
−1


,

a2 =




1
1
1


, a3 =




3
−1
−3


, and a4 =




3
1
0


. In each case below, either express b as a linear

combination of a1, a2, a3, and a4, or show that it is not such a linear combination. Explain what
your answer means for the corresponding system Ax = b of linear equations.

a. b =




1
2
3


 b. b =




4
2
1




Solution. By Theorem 2.2.1, b is a linear combination of a1, a2, a3, and a4 if and only if the
system Ax = b is consistent (that is, it has a solution). So in each case we carry the augmented
matrix [A|b] of the system Ax = b to reduced form.

a. Here




2 1 3 3 1
0 1 −1 1 2
−1 1 −3 0 3


→




1 0 2 1 0
0 1 −1 1 0
0 0 0 0 1


, so the system Ax = b has no

solution in this case. Hence b is not a linear combination of a1, a2, a3, and a4.

b. Now




2 1 3 3 4
0 1 −1 1 2
−1 1 −3 0 1


→




1 0 2 1 1
0 1 −1 1 2
0 0 0 0 0


, so the system Ax = b is consistent.

Thus b is a linear combination of a1, a2, a3, and a4 in this case. In fact the general solution is
x1 = 1−2s− t, x2 = 2+ s− t, x3 = s, and x4 = t where s and t are arbitrary parameters. Hence

x1a1 + x2a2 + x3a3 + x4a4 = b =




4
2
1


 for any choice of s and t. If we take s = 0 and t = 0, this

becomes a1 +2a2 = b, whereas taking s = 1 = t gives −2a1 +2a2 +a3 +a4 = b.

Example 2.2.5

Taking A to be the zero matrix, we have 0x = 0 for all vectors x by Definition 2.5 because every
column of the zero matrix is zero. Similarly, A0 = 0 for all matrices A because every entry of the
zero vector is zero.
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Example 2.2.6

If I =




1 0 0
0 1 0
0 0 1


, show that Ix = x for any vector x in R3.

Solution. If x =




x1

x2

x3


 then Definition 2.5 gives

Ix = x1




1
0
0


+ x2




0
1
0


+ x3




0
0
1


=




x1

0
0


+




0
x2

0


+




0
0

x3


=




x1

x2

x3


= x

The matrix I in Example 2.2.6 is called the 3×3 identity matrix, and we will encounter such matrices
again in Example 2.2.11 below. Before proceeding, we develop some algebraic properties of matrix-vector
multiplication that are used extensively throughout linear algebra.

Theorem 2.2.2

Let A and B be m×n matrices, and let x and y be n-vectors in Rn. Then:

1. A(x+y) = Ax+Ay.

2. A(ax) = a(Ax) = (aA)x for all scalars a.

3. (A+B)x = Ax+Bx.

Proof. We prove (3); the other verifications are similar and are left as exercises. Let A=
[

a1 a2 · · · an

]

and B =
[

b1 b2 · · · bn

]
be given in terms of their columns. Since adding two matrices is the same

as adding their columns, we have

A+B =
[

a1 +b1 a2 +b2 · · · an +bn

]

If we write x =




x1

x2
...

xn


 Definition 2.5 gives

(A+B)x = x1(a1 +b1)+ x2(a2 +b2)+ · · ·+ xn(an +bn)

= (x1a1 + x2a2 + · · ·+ xnan)+(x1b1 + x2b2 + · · ·+ xnbn)

= Ax+Bx

Theorem 2.2.2 allows matrix-vector computations to be carried out much as in ordinary arithmetic. For
example, for any m×n matrices A and B and any n-vectors x and y, we have:

A(2x−5y) = 2Ax−5Ay and (3A−7B)x = 3Ax−7Bx
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We will use such manipulations throughout the book, often without mention.

Linear Equations

Theorem 2.2.2 also gives a useful way to describe the solutions to a system

Ax = b

of linear equations. There is a related system

Ax = 0

called the associated homogeneous system, obtained from the original system Ax = b by replacing all
the constants by zeros. Suppose x1 is a solution to Ax = b and x0 is a solution to Ax = 0 (that is Ax1 = b

and Ax0 = 0). Then x1 +x0 is another solution to Ax = b. Indeed, Theorem 2.2.2 gives

A(x1 +x0) = Ax1 +Ax0 = b+0 = b

This observation has a useful converse.

Theorem 2.2.3

Suppose x1 is any particular solution to the system Ax = b of linear equations. Then every solution
x2 to Ax = b has the form

x2 = x0 +x1

for some solution x0 of the associated homogeneous system Ax = 0.

Proof. Suppose x2 is also a solution to Ax = b, so that Ax2 = b. Write x0 = x2−x1. Then x2 = x0 +x1

and, using Theorem 2.2.2, we compute

Ax0 = A(x2−x1) = Ax2−Ax1 = b−b = 0

Hence x0 is a solution to the associated homogeneous system Ax = 0.

Note that gaussian elimination provides one such representation.

Example 2.2.7

Express every solution to the following system as the sum of a specific solution plus a solution to
the associated homogeneous system.

x1− x2− x3 + 3x4 = 2
2x1− x2− 3x3 + 4x4 = 6

x1 − 2x3 + x4 = 4
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Solution. Gaussian elimination gives x1 = 4+2s− t, x2 = 2+ s+2t, x3 = s, and x4 = t where s

and t are arbitrary parameters. Hence the general solution can be written

x =




x1

x2

x3

x4


=




4+2s− t

2+ s+2t

s

t


=




4
2
0
0


+


s




2
1
1
0


+ t




−1
2
0
1







Thus x1 =




4
2
0
0


 is a particular solution (where s = 0 = t), and x0 = s




2
1
1
0


+ t




−1
2
0
1


 gives all

solutions to the associated homogeneous system. (To see why this is so, carry out the gaussian
elimination again but with all the constants set equal to zero.)

The following useful result is included with no proof.

Theorem 2.2.4

Let Ax = b be a system of equations with augmented matrix
[

A b
]
. Write rank A = r.

1. rank
[

A b
]

is either r or r+1.

2. The system is consistent if and only if rank
[

A b
]
= r.

3. The system is inconsistent if and only if rank
[

A b
]
= r+1.

The Dot Product

Definition 2.5 is not always the easiest way to compute a matrix-vector product Ax because it requires
that the columns of A be explicitly identified. There is another way to find such a product which uses the
matrix A as a whole with no reference to its columns, and hence is useful in practice. The method depends
on the following notion.

Definition 2.6 Dot Product in Rn

If (a1, a2, . . . , an) and (b1, b2, . . . , bn) are two ordered n-tuples, their dot product is defined to
be the number

a1b1 +a2b2 + · · ·+anbn

obtained by multiplying corresponding entries and adding the results.
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To see how this relates to matrix products, let A denote a 3×4 matrix and let x be a 4-vector. Writing

x =




x1

x2

x3

x4


 and A =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34




in the notation of Section 2.1, we compute

Ax =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34







x1

x2

x3

x4


= x1




a11

a21

a31


+ x2




a12

a22

a32


+ x3




a13

a23

a33


+ x4




a14

a24

a34




=




a11x1 +a12x2 +a13x3 +a14x4

a21x1 +a22x2 +a23x3 +a24x4

a31x1 +a32x2 +a33x3 +a34x4




From this we see that each entry of Ax is the dot product of the corresponding row of A with x. This
computation goes through in general, and we record the result in Theorem 2.2.5.

Theorem 2.2.5: Dot Product Rule

Let A be an m×n matrix and let x be an n-vector. Then each entry of the vector Ax is the dot
product of the corresponding row of A with x.

This result is used extensively throughout linear algebra.

If A is m× n and x is an n-vector, the computation of Ax by the dot product rule is simpler than
using Definition 2.5 because the computation can be carried out directly with no explicit reference to the
columns of A (as in Definition 2.5). The first entry of Ax is the dot product of row 1 of A with x. In
hand calculations this is computed by going across row one of A, going down the column x, multiplying
corresponding entries, and adding the results. The other entries of Ax are computed in the same way using
the other rows of A with the column x.









=







row i entry i

A x Ax

In general, compute entry i of Ax as follows (see the diagram):

Go across row i of A and down column x, multiply corre-
sponding entries, and add the results.

As an illustration, we rework Example 2.2.2 using the dot product rule
instead of Definition 2.5.

Example 2.2.8

If A =




2 −1 3 5
0 2 −3 1
−3 4 1 2


 and x =




2
1
0
−2


, compute Ax.
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Solution. The entries of Ax are the dot products of the rows of A with x:

Ax=




2 −1 3 5
0 2 −3 1
−3 4 1 2







2
1
0
−2


=




2 ·2 + (−1)1 + 3 ·0 + 5(−2)
0 ·2 + 2 ·1 + (−3)0 + 1(−2)

(−3)2 + 4 ·1 + 1 ·0 + 2(−2)


=



−7

0
−6




Of course, this agrees with the outcome in Example 2.2.2.

Example 2.2.9

Write the following system of linear equations in the form Ax = b.

5x1− x2 + 2x3 + x4− 3x5 = 8
x1 + x2 + 3x3− 5x4 + 2x5 =−2
−x1 + x2− 2x3 + − 3x5 = 0

Solution. Write A =




5 −1 2 1 −3
1 1 3 −5 2
−1 1 −2 0 −3


, b =




8
−2

0


, and x =




x1

x2

x3

x4

x5




. Then the dot

product rule gives Ax =




5x1− x2 + 2x3 + x4− 3x5

x1 + x2 + 3x3− 5x4 + 2x5
−x1 + x2− 2x3 − 3x5


, so the entries of Ax are the left sides of

the equations in the linear system. Hence the system becomes Ax = b because matrices are equal if
and only corresponding entries are equal.

Example 2.2.10

If A is the zero m×n matrix, then Ax = 0 for each n-vector x.

Solution. For each k, entry k of Ax is the dot product of row k of A with x, and this is zero because
row k of A consists of zeros.

Definition 2.7 The Identity Matrix

For each n > 2, the identity matrix In is the n×n matrix with 1s on the main diagonal (upper left
to lower right), and zeros elsewhere.
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The first few identity matrices are

I2 =

[
1 0
0 1

]
, I3 =




1 0 0
0 1 0
0 0 1


 , I4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , . . .

In Example 2.2.6 we showed that I3x = x for each 3-vector x using Definition 2.5. The following result
shows that this holds in general, and is the reason for the name.

Example 2.2.11

For each n≥ 2 we have Inx = x for each n-vector x in Rn.

Solution. We verify the case n = 4. Given the 4-vector x =




x1

x2

x3

x4


 the dot product rule gives

I4x =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







x1

x2

x3

x4


=




x1 +0+0+0
0+ x2 +0+0
0+0+ x3 +0
0+0+0+ x4


=




x1

x2

x3

x4


= x

In general, Inx = x because entry k of Inx is the dot product of row k of In with x, and row k of In

has 1 in position k and zeros elsewhere.

Example 2.2.12

Let A =
[

a1 a2 · · · an

]
be any m×n matrix with columns a1, a2, . . . , an. If e j denotes

column j of the n×n identity matrix In, then Ae j = a j for each j = 1, 2, . . . , n.

Solution. Write e j =




t1
t2
...
tn


 where t j = 1, but ti = 0 for all i 6= j. Then Theorem 2.2.5 gives

Ae j = t1a1 + · · ·+ t ja j + · · ·+ tnan = 0+ · · ·+a j + · · ·+0 = a j

Example 2.2.12 will be referred to later; for now we use it to prove:

Theorem 2.2.6

Let A and B be m×n matrices. If Ax = Bx for all x in Rn, then A = B.

Proof. Write A =
[

a1 a2 · · · an

]
and B =

[
b1 b2 · · · bn

]
and in terms of their columns. It is

enough to show that ak = bk holds for all k. But we are assuming that Aek = Bek, which gives ak = bk by
Example 2.2.12.
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We have introduced matrix-vector multiplication as a new way to think about systems of linear equa-
tions. But it has several other uses as well. It turns out that many geometric operations can be described
using matrix multiplication, and we now investigate how this happens. As a bonus, this description pro-
vides a geometric “picture” of a matrix by revealing the effect on a vector when it is multiplied by A. This
“geometric view” of matrices is a fundamental tool in understanding them.

Transformations

0 =

[
0
0

]

[
a1

a2

]

a1

a2

x1

x2

Figure 2.2.1




a1

a2

a3




a1

a2

a3

0

x1

x2

x3

Figure 2.2.2

The set R2 has a geometrical interpretation as the euclidean plane where

a vector

[
a1

a2

]
in R2 represents the point (a1, a2) in the plane (see Fig-

ure 2.2.1). In this way we regard R2 as the set of all points in the plane.
Accordingly, we will refer to vectors in R2 as points, and denote their
coordinates as a column rather than a row. To enhance this geometrical

interpretation of the vector

[
a1

a2

]
, it is denoted graphically by an arrow

from the origin

[
0
0

]
to the vector as in Figure 2.2.1.

Similarly we identify R3 with 3-dimensional space by writing a point

(a1, a2, a3) as the vector




a1

a2

a3


 in R3, again represented by an arrow4

from the origin to the point as in Figure 2.2.2. In this way the terms “point”
and “vector” mean the same thing in the plane or in space.

We begin by describing a particular geometrical transformation of the
plane R2.

Example 2.2.13

[
a1

a2

]

[
a1

−a2

]

0
x

y

Figure 2.2.3

Consider the transformation of R2 given by reflection in the

x axis. This operation carries the vector

[
a1

a2

]
to its reflection

[
a1

−a2

]
as in Figure 2.2.3. Now observe that

[
a1

−a2

]
=

[
1 0
0 −1

][
a1

a2

]

so reflecting

[
a1

a2

]
in the x axis can be achieved by multiplying

by the matrix

[
1 0
0 −1

]
.

4This “arrow” representation of vectors in R2 and R3 will be used extensively in Chapter 4.
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If we write A =

[
1 0
0 −1

]
, Example 2.2.13 shows that reflection in the x axis carries each vector x in

R2 to the vector Ax in R2. It is thus an example of a function

T : R2→R2 where T (x) = Ax for all x in R2

As such it is a generalization of the familiar functions f : R→ R that carry a number x to another real
number f (x).

x T (x)

T

Rn Rm

Figure 2.2.4

More generally, functions T : Rn → Rm are called transformations

from Rn to Rm. Such a transformation T is a rule that assigns to every
vector x in Rn a uniquely determined vector T (x) in Rm called the image

of x under T . We denote this state of affairs by writing

T : Rn→ Rm or Rn T−→ Rm

The transformation T can be visualized as in Figure 2.2.4.

To describe a transformation T : Rn→ Rm we must specify the vector
T (x) in Rm for every x in Rn. This is referred to as defining T , or as specifying the action of T . Saying
that the action defines the transformation means that we regard two transformations S : Rn → Rm and
T : Rn→Rm as equal if they have the same action; more formally

S = T if and only if S(x) = T (x) for all x in Rn.

Again, this what we mean by f = g where f , g : R→ R are ordinary functions.

Functions f : R→R are often described by a formula, examples being f (x) = x2 +1 and f (x) = sinx.
The same is true of transformations; here is an example.

Example 2.2.14

The formula T




x1

x2

x3

x4


=




x1 + x2

x2 + x3

x3 + x4


 defines a transformation R4→ R3.

Example 2.2.13 suggests that matrix multiplication is an important way of defining transformations
Rn→Rm. If A is any m×n matrix, multiplication by A gives a transformation

TA : Rn→ Rm defined by TA(x) = Ax for every x in Rn

Definition 2.8 Matrix Transformation TA

TA is called the matrix transformation induced by A.

Thus Example 2.2.13 shows that reflection in the x axis is the matrix transformation R2 → R2 in-

duced by the matrix

[
1 0
0 −1

]
. Also, the transformation R : R4→ R3 in Example 2.2.13 is the matrix



60 Matrix Algebra

transformation induced by the matrix

A =




1 1 0 0
0 1 1 0
0 0 1 1


 because




1 1 0 0
0 1 1 0
0 0 1 1







x1

x2

x3

x4


=




x1 + x2

x2 + x3

x3 + x4




Example 2.2.15

Let Rπ
2

: R2→ R2 denote counterclockwise rotation about the origin through π
2 radians (that is,

90◦)5. Show that Rπ
2

is induced by the matrix

[
0 −1
1 0

]
.

Solution.

a

b

a
b

q

0 p
x

y

R π
2
(x) =

[
−b

a

]

x =

[
a

b

]

Figure 2.2.5

The effect of Rπ
2

is to rotate the vector x =

[
a

b

]

counterclockwise through π
2 to produce the vector Rπ

2
(x) shown

in Figure 2.2.5. Since triangles 0px and 0qRπ
2
(x) are identical,

we obtain Rπ
2
(x) =

[
−b

a

]
. But

[
−b

a

]
=

[
0 −1
1 0

][
a

b

]
,

so we obtain Rπ
2
(x) = Ax for all x in R2 where A =

[
0 −1
1 0

]
.

In other words, Rπ
2

is the matrix transformation induced by A.

If A is the m×n zero matrix, then A induces the transformation

T : Rn→ Rm given by T (x) = Ax = 0 for all x in Rn

This is called the zero transformation, and is denoted T = 0.

Another important example is the identity transformation

1Rn : Rn→ Rn given by 1Rn(x) = x for all x in Rn

That is, the action of 1Rn on x is to do nothing to it. If In denotes the n×n identity matrix, we showed in
Example 2.2.11 that Inx = x for all x in Rn. Hence 1Rn(x) = Inx for all x in Rn; that is, the identity matrix
In induces the identity transformation.

Here are two more examples of matrix transformations with a clear geometric description.

5Radian measure for angles is based on the fact that 360◦ equals 2π radians. Hence π radians = 180◦ and π
2 radians = 90◦.
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Example 2.2.16

If a > 0, the matrix transformation T

[
x

y

]
=

[
ax

y

]
induced by the matrix A =

[
a 0
0 1

]
is called

an xxx-expansion of R2 if a > 1, and an xxx-compression if 0 < a < 1. The reason for the names is

clear in the diagram below. Similarly, if b > 0 the matrix A =

[
1 0
0 b

]
gives rise to yyy-expansions

and yyy-compressions.

0
x

y

[
x

y

]

0
x

y

[
1
2 x

y

]

x-compression

a = 1
2

0
x

y

[
3
2 x

y

]

x-expansion

a = 3
2

Example 2.2.17

If a is a number, the matrix transformation T

[
x

y

]
=

[
x+ay

y

]
induced by the matrix

A =

[
1 a

0 1

]
is called an xxx-shear of R2 (positive if a > 0 and negative if a < 0). Its effect is

illustrated below when a = 1
4 and a =−1

4 .

0
x

y

[
x

y

]

0
x

y

[
x+ 1

4 y

y

]
Positive x-shear

a = 1
4

0
x

y

[
x− 1

4 y

y

]
Negative x-shear

a =− 1
4

0

x =

[
x

y

]

x

y

Tw(x) =

[
x+2
y+1

]

Figure 2.2.6

We hasten to note that there are important geometric transformations
that are not matrix transformations. For example, if w is a fixed column in
Rn, define the transformation Tw : Rn→Rn by

Tw(x) = x+w for all x in Rn

Then Tw is called translation by w. In particular, if w =

[
2
1

]
in R2, the
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effect of Tw on

[
x

y

]
is to translate it two units to the right and one unit

up (see Figure 2.2.6).

The translation Tw is not a matrix transformation unless w = 0. Indeed, if Tw were induced by a matrix
A, then Ax = Tw(x) = x+w would hold for every x in Rn. In particular, taking x = 0 gives w = A0 = 0.

Exercises for 2.2

Exercise 2.2.1 In each case find a system of equations
that is equivalent to the given vector equation. (Do not
solve the system.)

a. x1




2
−3

0


+ x2




1
1
4


+ x3




2
0
−1


=




5
6
−3




b. x1




1
0
1
0


+ x2




−3
8
2
1


+ x3




−3
0
2
2


+ x4




3
2
0
−2


=




5
1
2
0




Exercise 2.2.2 In each case find a vector equation that
is equivalent to the given system of equations. (Do not
solve the equation.)

a. x1 − x2 + 3x3 = 5
−3x1 + x2 + x3 =−6

5x1 − 8x2 = 9

b. x1− 2x2 − x3 + x4 = 5
−x1 + x3− 2x4 =−3
2x1 − 2x2 + 7x3 = 8
3x1 − 4x2 + 9x3 − 2x4 = 12

Exercise 2.2.3 In each case compute Ax using: (i) Def-
inition 2.5. (ii) Theorem 2.2.5.

a. A =

[
3 −2 0
5 −4 1

]
and x =




x1

x2

x3


.

b. A =

[
1 2 3
0 −4 5

]
and x =




x1

x2

x3


.

c. A =



−2 0 5 4

1 2 0 3
−5 6 −7 8


 and x =




x1

x2

x3

x4


.

d. A =




3 −4 1 6
0 2 1 5
−8 7 −3 0


 and x =




x1

x2

x3

x4


.

Exercise 2.2.4 Let A=
[

a1 a2 a3 a4
]

be the 3×4

matrix given in terms of its columns a1 =




1
1
−1


,

a2 =




3
0
2


, a3 =




2
−1

3


, and a4 =




0
−3

5


. In each

case either express b as a linear combination of a1, a2, a3,
and a4, or show that it is not such a linear combination.
Explain what your answer means for the corresponding
system Ax = b of linear equations.

b =




0
3
5


a. b =




4
1
1


b.

Exercise 2.2.5 In each case, express every solution of
the system as a sum of a specific solution plus a solution
of the associated homogeneous system.

x+ y+ z= 2
2x + y = 3

x− y− 3z = 0

a. x− y− 4z =−4
x + 2y+ 5z = 2
x + y+ 2z = 0

b.

x1 + x2− x3 − 5x5 = 2
x2 + x3 − 4x5 =−1
x2 + x3 + x4− x5 =−1

2x1 − 4x3 + x4 + x5 = 6

c.

2x1 + x2− x3− x4 =−1
3x1 + x2 + x3− 2x4 =−2
−x1− x2 + 2x3 + x4 = 2
−2x1 − x2 + 2x4 = 3

d.
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Exercise 2.2.6 If x0 and x1 are solutions to the homo-
geneous system of equations Ax = 0, use Theorem 2.2.2
to show that sx0 + tx1 is also a solution for any scalars s

and t (called a linear combination of x0 and x1).

Exercise 2.2.7 Assume that A




1
−1

2


= 0 = A




2
0
3


.

Show that x0 =




2
−1

3


 is a solution to Ax = b. Find a

two-parameter family of solutions to Ax = b.

Exercise 2.2.8 In each case write the system in the form
Ax = b, use the gaussian algorithm to solve the system,
and express the solution as a particular solution plus a
linear combination of basic solutions to the associated
homogeneous system Ax = 0.

a. x1 − 2x2 + x3 + 4x4 − x5 = 8
−2x1 + 4x2 + x3− 2x4 − 4x5 =−1

3x1 − 6x2 + 8x3 + 4x4 − 13x5 = 1
8x1 − 16x2 + 7x3 + 12x4 − 6x5 = 11

b. x1 − 2x2 + x3 + 2x4 + 3x5 =−4
−3x1 + 6x2 − 2x3 − 3x4 − 11x5 = 11
−2x1 + 4x2 − x3 + x4 − 8x5 = 7
−x1 + 2x2 + 3x4 − 5x5 = 3

Exercise 2.2.9 Given vectors a1 =




1
0
1


,

a2 =




1
1
0


, and a3 =




0
−1

1


, find a vector b that is

not a linear combination of a1, a2, and a3. Justify your
answer. [Hint: Part (2) of Theorem 2.2.1.]

Exercise 2.2.10 In each case either show that the state-
ment is true, or give an example showing that it is false.

a.

[
3
2

]
is a linear combination of

[
1
0

]
and

[
0
1

]
.

b. If Ax has a zero entry, then A has a row of zeros.

c. If Ax = 0 where x 6= 0, then A = 0.

d. Every linear combination of vectors in Rn can be
written in the form Ax.

e. If A=
[

a1 a2 a3
]

in terms of its columns, and
if b = 3a1−2a2, then the system Ax = b has a so-
lution.

f. If A =
[

a1 a2 a3
]

in terms of its columns,
and if the system Ax = b has a solution, then
b = sa1 + ta2 for some s, t.

g. If A is m×n and m < n, then Ax = b has a solution
for every column b.

h. If Ax = b has a solution for some column b, then
it has a solution for every column b.

i. If x1 and x2 are solutions to Ax = b, then x1− x2

is a solution to Ax = 0.

j. Let A=
[

a1 a2 a3
]

in terms of its columns. If

a3 = sa1 + ta2, then Ax = 0, where x =




s

t

−1


.

Exercise 2.2.11 Let T : R2→ R2 be a transformation.
In each case show that T is induced by a matrix and find
the matrix.

a. T is a reflection in the y axis.

b. T is a reflection in the line y = x.

c. T is a reflection in the line y =−x.

d. T is a clockwise rotation through π
2 .

Exercise 2.2.12 The projection P : R3→ R2 is defined

by P




x

y

z


=

[
x

y

]
for all




x

y

z


 in R3. Show that P is

induced by a matrix and find the matrix.

Exercise 2.2.13 Let T : R3→ R3 be a transformation.
In each case show that T is induced by a matrix and find
the matrix.

a. T is a reflection in the x− y plane.

b. T is a reflection in the y− z plane.

Exercise 2.2.14 Fix a > 0 in R, and define Ta : R4→R4

by Ta(x) = ax for all x in R4. Show that T is induced by
a matrix and find the matrix. [T is called a dilation if
a > 1 and a contraction if a < 1.]

Exercise 2.2.15 Let A be m×n and let x be in Rn. If A

has a row of zeros, show that Ax has a zero entry.
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Exercise 2.2.16 If a vector b is a linear combination of
the columns of A, show that the system Ax = b is consis-
tent (that is, it has at least one solution.)

Exercise 2.2.17 If a system Ax = b is inconsistent (no
solution), show that b is not a linear combination of the
columns of A.

Exercise 2.2.18 Let x1 and x2 be solutions to the homo-
geneous system Ax = 0.

a. Show that x1 +x2 is a solution to Ax = 0.

b. Show that tx1 is a solution to Ax= 0 for any scalar
t.

Exercise 2.2.19 Suppose x1 is a solution to the system
Ax = b. If x0 is any nontrivial solution to the associ-
ated homogeneous system Ax = 0, show that x1+ tx0, t a
scalar, is an infinite one parameter family of solutions to
Ax = b. [Hint: Example 2.1.7 Section 2.1.]

Exercise 2.2.20 Let A and B be matrices of the same
size. If x is a solution to both the system Ax = 0 and the
system Bx = 0, show that x is a solution to the system
(A+B)x = 0.

Exercise 2.2.21 If A is m×n and Ax = 0 for every x in
Rn, show that A = 0 is the zero matrix. [Hint: Consider
Ae j where e j is the jth column of In; that is, e j is the
vector in Rn with 1 as entry j and every other entry 0.]

Exercise 2.2.22 Prove part (1) of Theorem 2.2.2.

Exercise 2.2.23 Prove part (2) of Theorem 2.2.2.

2.3 Matrix Multiplication

In Section 2.2 matrix-vector products were introduced. If A is an m×n matrix, the product Ax was defined
for any n-column x in Rn as follows: If A =

[
a1 a2 · · · an

]
where the a j are the columns of A, and if

x =




x1

x2
...

xn


, Definition 2.5 reads

Ax = x1a1 + x2a2 + · · ·+ xnan (2.5)

This was motivated as a way of describing systems of linear equations with coefficient matrix A. Indeed
every such system has the form Ax = b where b is the column of constants.

In this section we extend this matrix-vector multiplication to a way of multiplying matrices in gen-
eral, and then investigate matrix algebra for its own sake. While it shares several properties of ordinary
arithmetic, it will soon become clear that matrix arithmetic is different in a number of ways.

Matrix multiplication is closely related to composition of transformations.
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Composition and Matrix Multiplication

Sometimes two transformations “link” together as follows:

Rk T−→Rn S−→ Rm

In this case we can apply T first and then apply S, and the result is a new transformation

S ◦T : Rk→ Rm

called the composite of S and T , defined by

(S ◦T )(x) = S [T (x)] for all x in Rk

T S

S◦T

Rk Rn Rm

The action of S◦T can be described as “first T then S ” (note the order!)6.
This new transformation is described in the diagram. The reader will have
encountered composition of ordinary functions: For example, consider

R
g−→ R

f−→ R where f (x) = x2 and g(x) = x+1 for all x in R. Then

( f ◦g)(x) = f [g(x)] = f (x+1) = (x+1)2

(g◦ f )(x) = g [ f (x)] = g(x2) = x2 +1

for all x in R.

Our concern here is with matrix transformations. Suppose that A is an m×n matrix and B is an n× k

matrix, and let Rk TB−→ Rn TA−→ Rm be the matrix transformations induced by B and A respectively, that is:

TB(x) = Bx for all x in Rk and TA(y) = Ay for all y in Rn

Write B =
[

b1 b2 · · · bk

]
where b j denotes column j of B for each j. Hence each b j is an n-vector

(B is n× k) so we can form the matrix-vector product Ab j. In particular, we obtain an m× k matrix
[

Ab1 Ab2 · · · Abk

]

with columns Ab1, Ab2, · · · , Abk. Now compute (TA ◦TB)(x) for any x =




x1

x2
...

xk


 in Rk:

(TA ◦TB)(x) = TA [TB(x)] Definition of TA ◦TB

= A(Bx) A and B induce TA and TB

= A(x1b1 + x2b2 + · · ·+ xkbk) Equation 2.5 above
= A(x1b1)+A(x2b2)+ · · ·+A(xkbk) Theorem 2.2.2
= x1(Ab1)+ x2(Ab2)+ · · ·+ xk(Abk) Theorem 2.2.2
=

[
Ab1 Ab2 · · · Abk

]
x Equation 2.5 above

Because x was an arbitrary vector in Rn, this shows that TA ◦TB is the matrix transformation induced by
the matrix

[
Ab1 Ab2 · · · Abn

]
. This motivates the following definition.

6When reading the notation S ◦T , we read S first and then T even though the action is “first T then S ”. This annoying state
of affairs results because we write T (x) for the effect of the transformation T on x, with T on the left. If we wrote this instead
as (x)T , the confusion would not occur. However the notation T (x) is well established.
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Definition 2.9 Matrix Multiplication

Let A be an m×n matrix, let B be an n× k matrix, and write B =
[

b1 b2 · · · bk

]
where b j is

column j of B for each j. The product matrix AB is the m× k matrix defined as follows:

AB = A
[

b1 b2 · · · bk

]
=
[

Ab1 Ab2 · · · Abk

]

Thus the product matrix AB is given in terms of its columns Ab1, Ab2, . . . , Abn: Column j of AB is the
matrix-vector product Ab j of A and the corresponding column b j of B. Note that each such product Ab j

makes sense by Definition 2.5 because A is m×n and each b j is in Rn (since B has n rows). Note also that
if B is a column matrix, this definition reduces to Definition 2.5 for matrix-vector multiplication.

Given matrices A and B, Definition 2.9 and the above computation give

A(Bx) =
[

Ab1 Ab2 · · · Abn

]
x = (AB)x

for all x in Rk. We record this for reference.

Theorem 2.3.1

Let A be an m×n matrix and let B be an n× k matrix. Then the product matrix AB is m× k and
satisfies

A(Bx) = (AB)x for all x in Rk

Here is an example of how to compute the product AB of two matrices using Definition 2.9.

Example 2.3.1

Compute AB if A =




2 3 5
1 4 7
0 1 8


 and B =




8 9
7 2
6 1


.

Solution. The columns of B are b1 =




8
7
6


 and b2 =




9
2
1


, so Definition 2.5 gives

Ab1 =




2 3 5
1 4 7
0 1 8






8
7
6


=




67
78
55


 and Ab2 =




2 3 5
1 4 7
0 1 8






9
2
1


=




29
24
10




Hence Definition 2.9 above gives AB =
[

Ab1 Ab2
]
=




67 29
78 24
55 10


.
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Example 2.3.2

If A is m×n and B is n× k, Theorem 2.3.1 gives a simple formula for the composite of the matrix
transformations TA and TB:

TA ◦TB = TAB

Solution. Given any x in Rk,

(TA ◦TB)(x) = TA[TB(x)]

= A[Bx]

= (AB)x

= TAB(x)

While Definition 2.9 is important, there is another way to compute the matrix product AB that gives
a way to calculate each individual entry. In Section 2.2 we defined the dot product of two n-tuples to be
the sum of the products of corresponding entries. We went on to show (Theorem 2.2.5) that if A is an
m×n matrix and x is an n-vector, then entry j of the product Ax is the dot product of row j of A with x.
This observation was called the “dot product rule” for matrix-vector multiplication, and the next theorem
shows that it extends to matrix multiplication in general.

Theorem 2.3.2: Dot Product Rule

Let A and B be matrices of sizes m×n and n× k, respectively. Then the (i, j)-entry of AB is the
dot product of row i of A with column j of B.

Proof. Write B =
[

b1 b2 · · · bn

]
in terms of its columns. Then Ab j is column j of AB for each j.

Hence the (i, j)-entry of AB is entry i of Ab j, which is the dot product of row i of A with b j. This proves
the theorem.

Thus to compute the (i, j)-entry of AB, proceed as follows (see the diagram):

Go across row i of A, and down column j of B, multiply corresponding entries, and add the results.










=







row i column j (i, j)-entry

A B AB

Note that this requires that the rows of A must be the same length as the columns of B. The following rule
is useful for remembering this and for deciding the size of the product matrix AB.
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Compatibility Rule

A B

m× n n′ × k

Let A and B denote matrices. If A is m×n and B is n′× k, the product AB

can be formed if and only if n = n′. In this case the size of the product
matrix AB is m× k, and we say that AB is defined, or that A and B are
compatible for multiplication.

The diagram provides a useful mnemonic for remembering this. We adopt the following convention:

Convention

Whenever a product of matrices is written, it is tacitly assumed that the sizes of the factors are such that
the product is defined.

To illustrate the dot product rule, we recompute the matrix product in Example 2.3.1.

Example 2.3.3

Compute AB if A =




2 3 5
1 4 7
0 1 8


 and B =




8 9
7 2
6 1


.

Solution. Here A is 3×3 and B is 3×2, so the product matrix AB is defined and will be of size
3×2. Theorem 2.3.2 gives each entry of AB as the dot product of the corresponding row of A with
the corresponding column of B j that is,

AB =




2 3 5
1 4 7
0 1 8






8 9
7 2
6 1


=




2 ·8+3 ·7+5 ·6 2 ·9+3 ·2+5 ·1
1 ·8+4 ·7+7 ·6 1 ·9+4 ·2+7 ·1
0 ·8+1 ·7+8 ·6 0 ·9+1 ·2+8 ·1


=




67 29
78 24
55 10




Of course, this agrees with Example 2.3.1.

Example 2.3.4

Compute the (1, 3)- and (2, 4)-entries of AB where

A =

[
3 −1 2
0 1 4

]
and B =




2 1 6 0
0 2 3 4
−1 0 5 8


 .

Then compute AB.

Solution. The (1, 3)-entry of AB is the dot product of row 1 of A and column 3 of B (highlighted
in the following display), computed by multiplying corresponding entries and adding the results.

[
3 −1 2
0 1 4

]


2 1 6 0
0 2 3 4
−1 0 5 8


 (1, 3)-entry = 3 ·6+(−1) ·3+2 ·5= 25
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Similarly, the (2, 4)-entry of AB involves row 2 of A and column 4 of B.

[
3 −1 2
0 1 4

]


2 1 6 0
0 2 3 4
−1 0 5 8


 (2, 4)-entry = 0 ·0+1 ·4+4 ·8 = 36

Since A is 2×3 and B is 3×4, the product is 2×4.

AB =

[
3 −1 2
0 1 4

]


2 1 6 0
0 2 3 4
−1 0 5 8


=

[
4 1 25 12
−4 2 23 36

]

Example 2.3.5

If A =
[

1 3 2
]

and B =




5
6
4


, compute A2, AB, BA, and B2 when they are defined.7

Solution. Here, A is a 1×3 matrix and B is a 3×1 matrix, so A2 and B2 are not defined. However,
the compatibility rule reads

A B

1×3 3×1
and

B A

3×1 1×3

so both AB and BA can be formed and these are 1×1 and 3×3 matrices, respectively.

AB =
[

1 3 2
]



5
6
4


=

[
1 ·5+3 ·6+2 ·4

]
=
[

31
]

BA =




5
6
4


[ 1 3 2

]
=




5 ·1 5 ·3 5 ·2
6 ·1 6 ·3 6 ·2
4 ·1 4 ·3 4 ·2


=




5 15 10
6 18 12
4 12 8




Unlike numerical multiplication, matrix products AB and BA need not be equal. In fact they need not
even be the same size, as Example 2.3.5 shows. It turns out to be rare that AB = BA (although it is by no
means impossible), and A and B are said to commute when this happens.

Example 2.3.6

Let A =

[
6 9
−4 −6

]
and B =

[
1 2
−1 0

]
. Compute A2, AB, BA.

7As for numbers, we write A2 = A ·A, A3 = A ·A ·A, etc. Note that A2 is defined if and only if A is of size n× n for some n.
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Solution. A2 =

[
6 9
−4 −6

][
6 9
−4 −6

]
=

[
0 0
0 0

]
, so A2 = 0 can occur even if A 6= 0. Next,

AB =

[
6 9
−4 −6

][
1 2
−1 0

]
=

[
−3 12

2 −8

]

BA =

[
1 2
−1 0

][
6 9
−4 −6

]
=

[
−2 −3
−6 −9

]

Hence AB 6= BA, even though AB and BA are the same size.

Example 2.3.7

If A is any matrix, then IA = A and AI = A, and where I denotes an identity matrix of a size so that
the multiplications are defined.

Solution. These both follow from the dot product rule as the reader should verify. For a more
formal proof, write A =

[
a1 a2 · · · an

]
where a j is column j of A. Then Definition 2.9 and

Example 2.2.11 give

IA =
[

Ia1 Ia2 · · · Ian

]
=
[

a1 a2 · · · an

]
= A

If e j denotes column j of I, then Ae j = a j for each j by Example 2.2.12. Hence Definition 2.9
gives:

AI = A
[

e1 e2 · · · en

]
=
[

Ae1 Ae2 · · · Aen

]
=
[

a1 a2 · · · an

]
= A

The following theorem collects several results about matrix multiplication that are used everywhere in
linear algebra.

Theorem 2.3.3

Assume that a is any scalar, and that A, B, and C are matrices of sizes such that the indicated
matrix products are defined. Then:

1. IA = A and AI = A where I denotes an
identity matrix.

2. A(BC) = (AB)C.

3. A(B+C) = AB+AC.

4. (B+C)A = BA+CA.

5. a(AB) = (aA)B = A(aB).

6. (AB)T = BT AT .

Proof. Condition (1) is Example 2.3.7; we prove (2), (4), and (6) and leave (3) and (5) as exercises.

1. If C =
[

c1 c2 · · · ck

]
in terms of its columns, then BC =

[
Bc1 Bc2 · · · Bck

]
by Defini-
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tion 2.9, so

A(BC) =
[

A(Bc1) A(Bc2) · · · A(Bck)
]

Definition 2.9

=
[
(AB)c1 (AB)c2 · · · (AB)ck)

]
Theorem 2.3.1

= (AB)C Definition 2.9

4. We know (Theorem 2.2.2) that (B+C)x = Bx+Cx holds for every column x. If we write
A =

[
a1 a2 · · · an

]
in terms of its columns, we get

(B+C)A =
[
(B+C)a1 (B+C)a2 · · · (B+C)an

]
Definition 2.9

=
[

Ba1 +Ca1 Ba2 +Ca2 · · · Ban +Can

]
Theorem 2.2.2

=
[

Ba1 Ba2 · · · Ban

]
+
[

Ca1 Ca2 · · · Can

]
Adding Columns

= BA+CA Definition 2.9

6. As in Section 2.1, write A = [ai j] and B = [bi j], so that AT = [a′i j] and BT = [b′i j] where a′i j = a ji and
b′ji = bi j for all i and j. If ci j denotes the (i, j)-entry of BT AT , then ci j is the dot product of row i of
BT with column j of AT . Hence

ci j = b′i1a′1 j +b′i2a′2 j + · · ·+b′ima′m j = b1ia j1 +b2ia j2 + · · ·+bmia jm

= a j1b1i +a j2b2i + · · ·+a jmbmi

But this is the dot product of row j of A with column i of B; that is, the ( j, i)-entry of AB; that is,
the (i, j)-entry of (AB)T . This proves (6).

Property 2 in Theorem 2.3.3 is called the associative law of matrix multiplication. It asserts that the
equation A(BC) = (AB)C holds for all matrices (if the products are defined). Hence this product is the
same no matter how it is formed, and so is written simply as ABC. This extends: The product ABCD of
four matrices can be formed several ways—for example, (AB)(CD), [A(BC)]D, and A[B(CD)]—but the
associative law implies that they are all equal and so are written as ABCD. A similar remark applies in
general: Matrix products can be written unambiguously with no parentheses.

However, a note of caution about matrix multiplication must be taken: The fact that AB and BA need
not be equal means that the order of the factors is important in a product of matrices. For example ABCD

and ADCB may not be equal.

Warning

If the order of the factors in a product of matrices is changed, the product matrix may change
(or may not be defined). Ignoring this warning is a source of many errors by students of linear
algebra!

Properties 3 and 4 in Theorem 2.3.3 are called distributive laws. They assert that A(B+C)= AB+AC

and (B+C)A = BA+CA hold whenever the sums and products are defined. These rules extend to more
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than two terms and, together with Property 5, ensure that many manipulations familiar from ordinary
algebra extend to matrices. For example

A(2B−3C+D−5E) = 2AB−3AC+AD−5AE

(A+3C−2D)B = AB+3CB−2DB

Note again that the warning is in effect: For example A(B−C) need not equal AB−CA. These rules make
possible a lot of simplification of matrix expressions.

Example 2.3.8

Simplify the expression A(BC−CD)+A(C−B)D−AB(C−D).

Solution.

A(BC−CD)+A(C−B)D−AB(C−D) = A(BC)−A(CD)+(AC−AB)D− (AB)C+(AB)D

= ABC−ACD+ACD−ABD−ABC+ABD

= 0

Example 2.3.9 and Example 2.3.10 below show how we can use the properties in Theorem 2.3.2 to
deduce other facts about matrix multiplication. Matrices A and B are said to commute if AB = BA.

Example 2.3.9

Suppose that A, B, and C are n×n matrices and that both A and B commute with C; that is,
AC =CA and BC =CB. Show that AB commutes with C.

Solution. Showing that AB commutes with C means verifying that (AB)C =C(AB). The
computation uses the associative law several times, as well as the given facts that AC =CA and
BC =CB.

(AB)C = A(BC) = A(CB) = (AC)B = (CA)B =C(AB)

Example 2.3.10

Show that AB = BA if and only if (A−B)(A+B) = A2−B2.

Solution. The following always holds:

(A−B)(A+B) = A(A+B)−B(A+B) = A2 +AB−BA−B2 (2.6)

Hence if AB = BA, then (A−B)(A+B) = A2−B2 follows. Conversely, if this last equation holds,
then equation (2.6) becomes

A2−B2 = A2 +AB−BA−B2

This gives 0 = AB−BA, and AB = BA follows.



2.3. Matrix Multiplication 73

In Section 2.2 we saw (in Theorem 2.2.1) that every system of linear equations has the form

Ax = b

where A is the coefficient matrix, x is the column of variables, and b is the constant matrix. Thus the
system of linear equations becomes a single matrix equation. Matrix multiplication can yield information
about such a system.

Example 2.3.11

Consider a system Ax = b of linear equations where A is an m×n matrix. Assume that a matrix C

exists such that CA = In. If the system Ax = b has a solution, show that this solution must be Cb.
Give a condition guaranteeing that Cb is in fact a solution.

Solution. Suppose that x is any solution to the system, so that Ax = b. Multiply both sides of this
matrix equation by C to obtain, successively,

C(Ax) =Cb, (CA)x =Cb, Inx =Cb, x =Cb

This shows that if the system has a solution x, then that solution must be x =Cb, as required. But
it does not guarantee that the system has a solution. However, if we write x1 =Cb, then

Ax1 = A(Cb) = (AC)b

Thus x1 =Cb will be a solution if the condition AC = Im is satisfied.

The ideas in Example 2.3.11 lead to important information about matrices; this will be pursued in the
next section.

Block Multiplication

Definition 2.10 Block Partition of a Matrix

It is often useful to consider matrices whose entries are themselves matrices (called blocks). A
matrix viewed in this way is said to be partitioned into blocks.

For example, writing a matrix B in the form

B =
[

b1 b2 · · · bk

]
where the b j are the columns of B

is such a block partition of B. Here is another example.

Consider the matrices

A =




1 0 0 0 0
0 1 0 0 0
2 −1 4 2 1
3 1 −1 7 5


=

[
I2 023

P Q

]
and B =




4 −2
5 6
7 3
−1 0

1 6



=

[
X

Y

]
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where the blocks have been labelled as indicated. This is a natural way to partition A into blocks in view of
the blocks I2 and 023 that occur. This notation is particularly useful when we are multiplying the matrices
A and B because the product AB can be computed in block form as follows:

AB =

[
I 0
P Q

][
X

Y

]
=

[
IX +0Y

PX +QY

]
=

[
X

PX +QY

]
=




4 −2
5 6

30 8
8 27




This is easily checked to be the product AB, computed in the conventional manner.

In other words, we can compute the product AB by ordinary matrix multiplication, using blocks as

entries. The only requirement is that the blocks be compatible. That is, the sizes of the blocks must be

such that all (matrix) products of blocks that occur make sense. This means that the number of columns
in each block of A must equal the number of rows in the corresponding block of B.

Theorem 2.3.4: Block Multiplication

If matrices A and B are partitioned compatibly into blocks, the product AB can be computed by
matrix multiplication using blocks as entries.

We omit the proof.

We have been using two cases of block multiplication. If B =
[

b1 b2 · · · bk

]
is a matrix where

the b j are the columns of B, and if the matrix product AB is defined, then we have

AB = A
[

b1 b2 · · · bk

]
=
[

Ab1 Ab2 · · · Abk

]

This is Definition 2.9 and is a block multiplication where A = [A] has only one block. As another illustra-
tion,

Bx =
[

b1 b2 · · · bk

]




x1

x2
...

xk


= x1b1 + x2b2 + · · ·+ xkbk

where x is any k×1 column matrix (this is Definition 2.5).

It is not our intention to pursue block multiplication in detail here. However, we give one more example
because it will be used below.

Theorem 2.3.5

Suppose matrices A =

[
B X

0 C

]
and A1 =

[
B1 X1

0 C1

]
are partitioned as shown where B and B1

are square matrices of the same size, and C and C1 are also square of the same size. These are
compatible partitionings and block multiplication gives

AA1 =

[
B X

0 C

][
B1 X1

0 C1

]
=

[
BB1 BX1+XC1

0 CC1

]
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Example 2.3.12

Obtain a formula for Ak where A =

[
I X

0 0

]
is square and I is an identity matrix.

Solution. We have A2 =

[
I X

0 0

][
I X

0 0

]
=

[
I2 IX +X0
0 02

]
=

[
I X

0 0

]
= A. Hence

A3 = AA2 = AA = A2 = A. Continuing in this way, we see that Ak = A for every k ≥ 1.

Block multiplication has theoretical uses as we shall see. However, it is also useful in computing
products of matrices in a computer with limited memory capacity. The matrices are partitioned into blocks
in such a way that each product of blocks can be handled. Then the blocks are stored in auxiliary memory
and their products are computed one by one.

Directed Graphs

The study of directed graphs illustrates how matrix multiplication arises in ways other than the study of
linear equations or matrix transformations.

A directed graph consists of a set of points (called vertices) connected by arrows (called edges). For
example, the vertices could represent cities and the edges available flights. If the graph has n vertices
v1, v2, . . . , vn, the adjacency matrix A =

[
ai j

]
is the n×n matrix whose (i, j)-entry ai j is 1 if there is an

edge from v j to vi (note the order), and zero otherwise. For example, the adjacency matrix of the directed

graph shown is A =




1 1 0
1 0 1
1 0 0


.

v1 v2

v3

A path of length r (or an r-path) from vertex j to vertex i is a sequence
of r edges leading from v j to vi. Thus v1→ v2→ v1→ v1→ v3 is a 4-path
from v1 to v3 in the given graph. The edges are just the paths of length 1,
so the (i, j)-entry ai j of the adjacency matrix A is the number of 1-paths
from v j to vi. This observation has an important extension:

Theorem 2.3.6

If A is the adjacency matrix of a directed graph with n vertices, then the (i, j)-entry of Ar is the
number of r-paths v j→ vi.

As an illustration, consider the adjacency matrix A in the graph shown. Then

A =




1 1 0
1 0 1
1 0 0


 , A2 =




2 1 1
2 1 0
1 1 0


 , and A3 =




4 2 1
3 2 1
2 1 1




Hence, since the (2, 1)-entry of A2 is 2, there are two 2-paths v1→ v2 (in fact they are v1→ v1→ v2 and
v1 → v3 → v2). Similarly, the (2, 3)-entry of A2 is zero, so there are no 2-paths v3 → v2, as the reader



76 Matrix Algebra

can verify. The fact that no entry of A3 is zero shows that it is possible to go from any vertex to any other
vertex in exactly three steps.

To see why Theorem 2.3.6 is true, observe that it asserts that

the (i, j)-entry of Ar equals the number of r-paths v j→ vi (2.7)

holds for each r ≥ 1. We proceed by induction on r (see Appendix C). The case r = 1 is the definition of
the adjacency matrix. So assume inductively that (2.7) is true for some r ≥ 1; we must prove that (2.7)
also holds for r+1. But every (r+1)-path v j→ vi is the result of an r-path v j→ vk for some k, followed
by a 1-path vk→ vi. Writing A =

[
ai j

]
and Ar =

[
bi j

]
, there are bk j paths of the former type (by induction)

and aik of the latter type, and so there are aikbk j such paths in all. Summing over k, this shows that there
are

ai1b1 j +ai2b2 j + · · ·+ainbn j (r+1)-paths v j→ vi

But this sum is the dot product of the ith row
[

ai1 ai2 · · · ain

]
of A with the jth column

[
b1 j b2 j · · · bn j

]T
of Ar. As such, it is the (i, j)-entry of the matrix product ArA = Ar+1. This shows that (2.7) holds for
r+1, as required.

Exercises for 2.3

Exercise 2.3.1 Compute the following matrix products.

[
1 3
0 −2

][
2 −1
0 1

]
a.

[
1 −1 2
2 0 4

]


2 3 1
1 9 7
−1 0 2


b.

[
5 0 −7
1 5 9

]


3
1
−1


c.

[
1 3 −3

]



3 0
−2 1

0 6


d.




1 0 0
0 1 0
0 0 1






3 −2
5 −7
9 7


e.

[
1 −1 3

]



2
1
−8


f.




2
1
−7


[ 1 −1 3

]
g.

[
3 1
5 2

][
2 −1
−5 3

]
h.

[
2 3 1
5 7 4

]


a 0 0
0 b 0
0 0 c


i.




a 0 0
0 b 0
0 0 c






a′ 0 0
0 b′ 0
0 0 c′


j.

Exercise 2.3.2 In each of the following cases, find all
possible products A2, AB, AC, and so on.

a. A =

[
1 2 3
−1 0 0

]
, B =

[
1 −2
1
2 3

]
,

C =



−1 0

2 5
0 5




b. A =

[
1 2 4
0 1 −1

]
, B =

[
−1 6

1 0

]
,

C =




2 0
−1 1

1 2



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Exercise 2.3.3 Find a, b, a1, and b1 if:

a.

[
a b

a1 b1

][
3 −5
−1 2

]
=

[
1 −1
2 0

]

b.

[
2 1
−1 2

][
a b

a1 b1

]
=

[
7 2
−1 4

]

Exercise 2.3.4 Verify that A2−A−6I = 0 if:

[
3 −1
0 −2

]
a.

[
2 2
2 −1

]
b.

Exercise 2.3.5

Given A =

[
1 −1
0 1

]
, B =

[
1 0 −2
3 1 0

]
,

C =




1 0
2 1
5 8


, and D =

[
3 −1 2
1 0 5

]
, verify the

following facts from Theorem 2.3.1.

A(B−D) = AB−ADa. A(BC) = (AB)Cb.

(CD)T = DTCTc.

Exercise 2.3.6 Let A be a 2×2 matrix.

a. If A commutes with

[
0 1
0 0

]
, show that

A =

[
a b

0 a

]
for some a and b.

b. If A commutes with

[
0 0
1 0

]
, show that

A =

[
a 0
c a

]
for some a and c.

c. Show that A commutes with every 2×2 matrix

if and only if A =

[
a 0
0 a

]
for some a.

Exercise 2.3.7

a. If A2 can be formed, what can be said about the
size of A?

b. If AB and BA can both be formed, describe the
sizes of A and B.

c. If ABC can be formed, A is 3× 3, and C is 5× 5,
what size is B?

Exercise 2.3.8

a. Find two 2×2 matrices A such that A2 = 0.

b. Find three 2× 2 matrices A such that (i) A2 = I;
(ii) A2 = A.

c. Find 2×2 matrices A and B such that AB = 0 but
BA 6= 0.

Exercise 2.3.9 Write P =




1 0 0
0 0 1
0 1 0


, and let A be

3×n and B be m×3.

a. Describe PA in terms of the rows of A.

b. Describe BP in terms of the columns of B.

Exercise 2.3.10 Let A, B, and C be as in Exercise 2.3.5.
Find the (3, 1)-entry of CAB using exactly six numerical
multiplications.

Exercise 2.3.11 Compute AB, using the indicated block
partitioning.

A =




2 −1 3 1
1 0 1 2
0 0 1 0
0 0 0 1


 B =




1 2 0
−1 0 0

0 5 1
1 −1 0




Exercise 2.3.12 In each case give formulas for all pow-
ers A, A2, A3, . . . of A using the block decomposition
indicated.

a. A =




1 0 0
1 1 −1
1 −1 1




b. A =




1 −1 2 −1
0 1 0 0
0 0 −1 1
0 0 0 1




Exercise 2.3.13 Compute the following using block
multiplication (all blocks are k× k).

[
I X

−Y I

][
I 0

Y I

]
a.

[
I X

0 I

][
I −X

0 I

]
b.

[
I X

][
I X

]T
c.

[
I XT

][
−X I

]T
d.

[
I X

0 −I

]n

any n≥ 1e.

[
0 X

I 0

]n

any n≥ 1f.
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Exercise 2.3.14 Let A denote an m×n matrix.

a. If AX = 0 for every n× 1 matrix X , show that
A = 0.

b. If YA = 0 for every 1×m matrix Y , show that
A = 0.

Exercise 2.3.15

a. If U =

[
1 2
0 −1

]
, and AU = 0, show that A = 0.

b. Let U be such that AU = 0 implies that A = 0. If
PU = QU , show that P = Q.

Exercise 2.3.16 Simplify the following expressions
where A, B, and C represent matrices.

a. A(3B−C)+ (A−2B)C+2B(C+2A)

b. A(B+C−D)+B(C−A+D)− (A+B)C
+(A−B)D

c. AB(BC−CB)+ (CA−AB)BC+CA(A−B)C

d. (A−B)(C−A)+ (C−B)(A−C)+ (C−A)2

Exercise 2.3.17 If A =

[
a b

c d

]
where a 6= 0, show

that A factors in the form A =

[
1 0
x 1

][
y z

0 w

]
.

Exercise 2.3.18 If A and B commute with C, show that
the same is true of:

A+Ba. kA, k any scalarb.

Exercise 2.3.19 If A is any matrix, show that both AAT

and AT A are symmetric.

Exercise 2.3.20 If A and B are symmetric, show that AB

is symmetric if and only if AB = BA.

Exercise 2.3.21 If A is a 2×2 matrix, show that
AT A = AAT if and only if A is symmetric or

A =

[
a b

−b a

]
for some a and b.

Exercise 2.3.22

a. Find all symmetric 2× 2 matrices A such that
A2 = 0.

b. Repeat (a) if A is 3×3.

c. Repeat (a) if A is n×n.

Exercise 2.3.23 Show that there exist no 2× 2 matri-
ces A and B such that AB−BA = I. [Hint: Examine the
(1, 1)- and (2, 2)-entries.]

Exercise 2.3.24 Let B be an n× n matrix. Suppose
AB = 0 for some nonzero m× n matrix A. Show that
no n×n matrix C exists such that BC = I.

Exercise 2.3.25 An autoparts manufacturer makes fend-
ers, doors, and hoods. Each requires assembly and pack-
aging carried out at factories: Plant 1, Plant 2, and Plant
3. Matrix A below gives the number of hours for assem-
bly and packaging, and matrix B gives the hourly rates at
the three plants. Explain the meaning of the (3, 2)-entry
in the matrix AB. Which plant is the most economical to
operate? Give reasons.

Assembly Packaging
Fenders
Doors
Hoods




12 2
21 3
10 2


 = A

Plant 1 Plant 2 Plant 3
Assembly
Packaging

[
21 18 20
14 10 13

]
= B

Exercise 2.3.26 For the directed graph below, find the
adjacency matrix A, compute A3, and determine the num-
ber of paths of length 3 from v1 to v4 and from v2 to v3.

v1 v2

v3v4

Exercise 2.3.27 In each case either show the statement
is true, or give an example showing that it is false.

a. If A2 = I, then A = I.

b. If AJ = A, then J = I.

c. If A is square, then (AT )3 = (A3)T .

d. If A is symmetric, then I+A is symmetric.

e. If AB = AC and A 6= 0, then B =C.
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f. If A 6= 0, then A2 6= 0.

g. If A has a row of zeros, so also does BA for all B.

h. If A commutes with A+B, then A commutes with
B.

i. If B has a column of zeros, so also does AB.

j. If AB has a column of zeros, so also does B.

k. If A has a row of zeros, so also does AB.

l. If AB has a row of zeros, so also does A.

Exercise 2.3.28

a. If A and B are 2× 2 matrices whose rows sum to
1, show that the rows of AB also sum to 1.

b. Repeat part (a) for the case where A and B are
n×n.

Exercise 2.3.29 Let A and B be n×n matrices for which
the systems of equations Ax = 0 and Bx = 0 each have
only the trivial solution x = 0. Show that the system
(AB)x = 0 has only the trivial solution.

Exercise 2.3.30 The trace of a square matrix A, denoted
tr A, is the sum of the elements on the main diagonal of
A. Show that, if A and B are n×n matrices:

tr (A+B) = tr A+ tr B.a.

tr (kA) = k tr (A) for any number k.b.

tr (AT ) = tr (A).c. tr (AB) = tr (BA).d.

tr (AAT ) is the sum of the squares of all entries of
A.

e.

Exercise 2.3.31 Show that AB−BA = I is impossible.

[Hint: See the preceding exercise.]

Exercise 2.3.32 A square matrix P is called an
idempotent if P2 = P. Show that:

a. 0 and I are idempotents.

b.

[
1 1
0 0

]
,

[
1 0
1 0

]
, and 1

2

[
1 1
1 1

]
, are idem-

potents.

c. If P is an idempotent, so is I−P. Show further
that P(I−P) = 0.

d. If P is an idempotent, so is PT .

e. If P is an idempotent, so is Q = P+AP−PAP for
any square matrix A (of the same size as P).

f. If A is n×m and B is m× n, and if AB = In, then
BA is an idempotent.

Exercise 2.3.33 Let A and B be n×n diagonal matrices

(all entries off the main diagonal are zero).

a. Show that AB is diagonal and AB = BA.

b. Formulate a rule for calculating XA if X is m×n.

c. Formulate a rule for calculating AY if Y is n× k.

Exercise 2.3.34 If A and B are n×n matrices, show that:

a. AB = BA if and only if

(A+B)2 = A2 +2AB+B2

b. AB = BA if and only if

(A+B)(A−B) = (A−B)(A+B)

Exercise 2.3.35 In Theorem 2.3.3, prove

part 3;a. part 5.b.
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2.4 Matrix Inverses

Three basic operations on matrices, addition, multiplication, and subtraction, are analogs for matrices of
the same operations for numbers. In this section we introduce the matrix analog of numerical division.

To begin, consider how a numerical equation ax = b is solved when a and b are known numbers. If
a = 0, there is no solution (unless b = 0). But if a 6= 0, we can multiply both sides by the inverse a−1 = 1

a

to obtain the solution x = a−1b. Of course multiplying by a−1 is just dividing by a, and the property of
a−1 that makes this work is that a−1a = 1. Moreover, we saw in Section 2.2 that the role that 1 plays in
arithmetic is played in matrix algebra by the identity matrix I. This suggests the following definition.

Definition 2.11 Matrix Inverses

If A is a square matrix, a matrix B is called an inverse of A if and only if

AB = I and BA = I

A matrix A that has an inverse is called an invertible matrix.8

Example 2.4.1

Show that B =

[
−1 1

1 0

]
is an inverse of A =

[
0 1
1 1

]
.

Solution. Compute AB and BA.

AB =

[
0 1
1 1

][
−1 1

1 0

]
=

[
1 0
0 1

]
BA =

[
−1 1

1 0

][
0 1
1 1

]
=

[
1 0
0 1

]

Hence AB = I = BA, so B is indeed an inverse of A.

Example 2.4.2

Show that A =

[
0 0
1 3

]
has no inverse.

Solution. Let B =

[
a b

c d

]
denote an arbitrary 2×2 matrix. Then

AB =

[
0 0
1 3

][
a b

c d

]
=

[
0 0

a+3c b+3d

]

so AB has a row of zeros. Hence AB cannot equal I for any B.

8Only square matrices have inverses. Even though it is plausible that nonsquare matrices A and B could exist such that
AB = Im and BA = In, where A is m×n and B is n×m, we claim that this forces n = m. Indeed, if m < n there exists a nonzero
column x such that Ax = 0 (by Theorem 1.3.1), so x = Inx = (BA)x = B(Ax) = B(0) = 0, a contradiction. Hence m ≥ n.
Similarly, the condition AB = Im implies that n≥ m. Hence m = n so A is square.
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The argument in Example 2.4.2 shows that no zero matrix has an inverse. But Example 2.4.2 also
shows that, unlike arithmetic, it is possible for a nonzero matrix to have no inverse. However, if a matrix
does have an inverse, it has only one.

Theorem 2.4.1

If B and C are both inverses of A, then B =C.

Proof. Since B and C are both inverses of A, we have CA = I = AB. Hence

B = IB = (CA)B =C(AB) =CI =C

If A is an invertible matrix, the (unique) inverse of A is denoted A−1. Hence A−1 (when it exists) is a
square matrix of the same size as A with the property that

AA−1 = I and A−1A = I

These equations characterize A−1 in the following sense:

Inverse Criterion: If somehow a matrix B can be found such that AB = I and BA = I, then A

is invertible and B is the inverse of A; in symbols, B = A−1.

This is a way to verify that the inverse of a matrix exists. Example 2.4.3 and Example 2.4.4 offer illustra-
tions.

Example 2.4.3

If A =

[
0 −1
1 −1

]
, show that A3 = I and so find A−1.

Solution. We have A2 =

[
0 −1
1 −1

][
0 −1
1 −1

]
=

[
−1 1
−1 0

]
, and so

A3 = A2A =

[
−1 1
−1 0

][
0 −1
1 −1

]
=

[
1 0
0 1

]
= I

Hence A3 = I, as asserted. This can be written as A2A = I = AA2, so it shows that A2 is the inverse

of A. That is, A−1 = A2 =

[
−1 1
−1 0

]
.

The next example presents a useful formula for the inverse of a 2× 2 matrix A =

[
a b

c d

]
when it

exists. To state it, we define the determinant det A and the adjugate adj A of the matrix A as follows:

det

[
a b

c d

]
= ad−bc, and adj

[
a b

c d

]
=

[
d −b

−c a

]
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Example 2.4.4

If A =

[
a b

c d

]
, show that A has an inverse if and only if det A 6= 0, and in this case

A−1 = 1
det A

adj A

Solution. For convenience, write e = det A = ad−bc and B = adj A =

[
d −b

−c a

]
. Then

AB = eI = BA as the reader can verify. So if e 6= 0, scalar multiplication by 1
e

gives

A(1
e
B) = I = (1

e
B)A

Hence A is invertible and A−1 = 1
e
B. Thus it remains only to show that if A−1 exists, then e 6= 0.

We prove this by showing that assuming e = 0 leads to a contradiction. In fact, if e = 0, then
AB = eI = 0, so left multiplication by A−1 gives A−1AB = A−10; that is, IB = 0, so B = 0. But this
implies that a, b, c, and d are all zero, so A = 0, contrary to the assumption that A−1 exists.

As an illustration, if A =

[
2 4
−3 8

]
then det A = 2 · 8− 4 · (−3) = 28 6= 0. Hence A is invertible and

A−1 = 1
det A

adj A = 1
28

[
8 −4
3 2

]
, as the reader is invited to verify.

The determinant and adjugate will be defined in Chapter 3 for any square matrix, and the conclusions
in Example 2.4.4 will be proved in full generality.

Inverses and Linear Systems

Matrix inverses can be used to solve certain systems of linear equations. Recall that a system of linear
equations can be written as a single matrix equation

Ax = b

where A and b are known and x is to be determined. If A is invertible, we multiply each side of the equation
on the left by A−1 to get

A−1Ax = A−1b

Ix = A−1b

x = A−1b

This gives the solution to the system of equations (the reader should verify that x = A−1b really does
satisfy Ax = b). Furthermore, the argument shows that if x is any solution, then necessarily x = A−1b, so
the solution is unique. Of course the technique works only when the coefficient matrix A has an inverse.
This proves Theorem 2.4.2.
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Theorem 2.4.2

Suppose a system of n equations in n variables is written in matrix form as

Ax = b

If the n×n coefficient matrix A is invertible, the system has the unique solution

x = A−1b

Example 2.4.5

Use Example 2.4.4 to solve the system

{
5x1− 3x2 =−4
7x1 + 4x2 = 8

.

Solution. In matrix form this is Ax = b where A =

[
5 −3
7 4

]
, x =

[
x1

x2

]
, and b =

[
−4

8

]
. Then

det A = 5 ·4− (−3) ·7 = 41, so A is invertible and A−1 = 1
41

[
4 3
−7 5

]
by Example 2.4.4. Thus

Theorem 2.4.2 gives

x = A−1b = 1
41

[
4 3
−7 5

][
−4

8

]
= 1

41

[
8

68

]

so the solution is x1 =
8

41 and x2 =
68
41 .

An Inversion Method

If a matrix A is n× n and invertible, it is desirable to have an efficient technique for finding the inverse.
The following procedure will be justified in Section 2.5.

Matrix Inversion Algorithm

If A is an invertible (square) matrix, there exists a sequence of elementary row operations that carry
A to the identity matrix I of the same size, written A→ I. This same series of row operations
carries I to A−1; that is, I→ A−1. The algorithm can be summarized as follows:

[
A I

]
→
[

I A−1
]

where the row operations on A and I are carried out simultaneously.
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Example 2.4.6

Use the inversion algorithm to find the inverse of the matrix

A =




2 7 1
1 4 −1
1 3 0




Solution. Apply elementary row operations to the double matrix

[
A I

]
=




2 7 1 1 0 0
1 4 −1 0 1 0
1 3 0 0 0 1




so as to carry A to I. First interchange rows 1 and 2.



1 4 −1 0 1 0
2 7 1 1 0 0
1 3 0 0 0 1




Next subtract 2 times row 1 from row 2, and subtract row 1 from row 3.



1 4 −1 0 1 0
0 −1 3 1 −2 0
0 −1 1 0 −1 1




Continue to reduced row-echelon form.



1 0 11 4 −7 0
0 1 −3 −1 2 0
0 0 −2 −1 1 1







1 0 0 −3
2

−3
2

11
2

0 1 0 1
2

1
2
−3
2

0 0 1 1
2
−1
2

−1
2




Hence A−1 = 1
2



−3 −3 11

1 1 −3
1 −1 −1


, as is readily verified.

Given any n×n matrix A, Theorem 1.2.1 shows that A can be carried by elementary row operations to
a matrix R in reduced row-echelon form. If R = I, the matrix A is invertible (this will be proved in the next
section), so the algorithm produces A−1. If R 6= I, then R has a row of zeros (it is square), so no system of
linear equations Ax = b can have a unique solution. But then A is not invertible by Theorem 2.4.2. Hence,
the algorithm is effective in the sense conveyed in Theorem 2.4.3.
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Theorem 2.4.3

If A is an n×n matrix, either A can be reduced to I by elementary row operations or it cannot. In
the first case, the algorithm produces A−1; in the second case, A−1 does not exist.

Properties of Inverses

The following properties of an invertible matrix are used everywhere.

Example 2.4.7: Cancellation Laws

Let A be an invertible matrix. Show that:

1. If AB = AC, then B =C.

2. If BA =CA, then B =C.

Solution. Given the equation AB = AC, left multiply both sides by A−1 to obtain A−1AB = A−1AC.
Thus IB = IC, that is B =C. This proves (1) and the proof of (2) is left to the reader.

Properties (1) and (2) in Example 2.4.7 are described by saying that an invertible matrix can be “left
cancelled” and “right cancelled”, respectively. Note however that “mixed” cancellation does not hold in
general: If A is invertible and AB =CA, then B and C may not be equal, even if both are 2×2. Here is a
specific example:

A =

[
1 1
0 1

]
, B =

[
0 0
1 2

]
, C =

[
1 1
1 1

]

Sometimes the inverse of a matrix is given by a formula. Example 2.4.4 is one illustration; Example 2.4.8
and Example 2.4.9 provide two more. The idea is the Inverse Criterion: If a matrix B can be found such
that AB = I = BA, then A is invertible and A−1 = B.

Example 2.4.8

If A is an invertible matrix, show that the transpose AT is also invertible. Show further that the
inverse of AT is just the transpose of A−1; in symbols, (AT )−1 = (A−1)T .

Solution. A−1 exists (by assumption). Its transpose (A−1)T is the candidate proposed for the
inverse of AT . Using the inverse criterion, we test it as follows:

AT (A−1)T =(A−1A)T = IT = I

(A−1)T AT =(AA−1)T = IT = I

Hence (A−1)T is indeed the inverse of AT ; that is, (AT )−1 = (A−1)T .
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Example 2.4.9

If A and B are invertible n×n matrices, show that their product AB is also invertible and
(AB)−1 = B−1A−1.

Solution. We are given a candidate for the inverse of AB, namely B−1A−1. We test it as follows:

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

Hence B−1A−1 is the inverse of AB; in symbols, (AB)−1 = B−1A−1.

We now collect several basic properties of matrix inverses for reference.

Theorem 2.4.4

All the following matrices are square matrices of the same size.

1. I is invertible and I−1 = I.

2. If A is invertible, so is A−1, and (A−1)−1 = A.

3. If A and B are invertible, so is AB, and (AB)−1 = B−1A−1.

4. If A1, A2, . . . , Ak are all invertible, so is their product A1A2 · · ·Ak, and

(A1A2 · · ·Ak)
−1 = A−1

k · · ·A−1
2 A−1

1 .

5. If A is invertible, so is Ak for any k ≥ 1, and (Ak)−1 = (A−1)k.

6. If A is invertible and a 6= 0 is a number, then aA is invertible and (aA)−1 = 1
a
A−1.

7. If A is invertible, so is its transpose AT , and (AT )−1 = (A−1)T .

Proof.

1. This is an immediate consequence of the fact that I2 = I.

2. The equations AA−1 = I = A−1A show that A is the inverse of A−1; in symbols, (A−1)−1 = A.

3. This is Example 2.4.9.

4. Use induction on k. If k = 1, there is nothing to prove, and if k = 2, the result is property 3. If
k > 2, assume inductively that (A1A2 · · ·Ak−1)

−1 = A−1
k−1 · · ·A−1

2 A−1
1 . We apply this fact together

with property 3 as follows:

[A1A2 · · ·Ak−1Ak]
−1 = [(A1A2 · · ·Ak−1)Ak]

−1

= A−1
k (A1A2 · · ·Ak−1)

−1

= A−1
k

(
A−1

k−1 · · ·A−1
2 A−1

1

)
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So the proof by induction is complete.

5. This is property 4 with A1 = A2 = · · ·= Ak = A.

6. This is left as Exercise 2.4.29.

7. This is Example 2.4.8.

The reversal of the order of the inverses in properties 3 and 4 of Theorem 2.4.4 is a consequence of
the fact that matrix multiplication is not commutative. Another manifestation of this comes when matrix
equations are dealt with. If a matrix equation B =C is given, it can be left-multiplied by a matrix A to yield
AB = AC. Similarly, right-multiplication gives BA =CA. However, we cannot mix the two: If B = C, it

need not be the case that AB =CA even if A is invertible, for example, A =

[
1 1
0 1

]
, B =

[
0 0
1 0

]
=C.

Part 7 of Theorem 2.4.4 together with the fact that (AT )T = A gives

Corollary 2.4.1

A square matrix A is invertible if and only if AT is invertible.

Example 2.4.10

Find A if (AT −2I)−1 =

[
2 1
−1 0

]
.

Solution. By Theorem 2.4.4(2) and Example 2.4.4, we have

(AT −2I) =
[(

AT −2I
)−1
]−1

=

[
2 1
−1 0

]−1

=

[
0 −1
1 2

]

Hence AT = 2I +

[
0 −1
1 2

]
=

[
2 −1
1 4

]
, so A =

[
2 1
−1 4

]
by Theorem 2.4.4(7).

The following important theorem collects a number of conditions all equivalent9 to invertibility. It will
be referred to frequently below.

Theorem 2.4.5: Inverse Theorem

The following conditions are equivalent for an n×n matrix A:

1. A is invertible.

2. The homogeneous system Ax = 0 has only the trivial solution x = 0.

3. A can be carried to the identity matrix In by elementary row operations.

9If p and q are statements, we say that p implies q (written p⇒ q) if q is true whenever p is true. The statements are called
equivalent if both p⇒ q and q⇒ p (written p⇔ q, spoken “p if and only if q”). See Appendix B.
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4. The system Ax = b has at least one solution x for every choice of column b.

5. There exists an n×n matrix C such that AC = In.

Proof. We show that each of these conditions implies the next, and that (5) implies (1).

(1)⇒ (2). If A−1 exists, then Ax = 0 gives x = Inx = A−1Ax = A−10 = 0.

(2) ⇒ (3). Assume that (2) is true. Certainly A→ R by row operations where R is a reduced, row-
echelon matrix. It suffices to show that R = In. Suppose that this is not the case. Then R has a row
of zeros (being square). Now consider the augmented matrix

[
A 0

]
of the system Ax = 0. Then[

A 0
]
→
[

R 0
]

is the reduced form, and
[

R 0
]

also has a row of zeros. Since R is square there
must be at least one nonleading variable, and hence at least one parameter. Hence the system Ax = 0 has
infinitely many solutions, contrary to (2). So R = In after all.

(3)⇒ (4). Consider the augmented matrix
[

A b
]

of the system Ax = b. Using (3), let A→ In by a
sequence of row operations. Then these same operations carry

[
A b

]
→
[

In c
]

for some column c.
Hence the system Ax = b has a solution (in fact unique) by gaussian elimination. This proves (4).

(4)⇒ (5). Write In =
[

e1 e2 · · · en

]
where e1, e2, . . . , en are the columns of In. For each

j = 1, 2, . . . , n, the system Ax = e j has a solution c j by (4), so Ac j = e j. Now let C =
[

c1 c2 · · · cn

]

be the n×n matrix with these matrices c j as its columns. Then Definition 2.9 gives (5):

AC = A
[

c1 c2 · · · cn

]
=
[

Ac1 Ac2 · · · Acn

]
=
[

e1 e2 · · · en

]
= In

(5)⇒ (1). Assume that (5) is true so that AC = In for some matrix C. Then Cx = 0 implies x = 0 (because
x = Inx = ACx = A0 = 0). Thus condition (2) holds for the matrix C rather than A. Hence the argument
above that (2)⇒ (3)⇒ (4)⇒ (5) (with A replaced by C) shows that a matrix C′ exists such that CC′ = In.
But then

A = AIn = A(CC′) = (AC)C′ = InC′ =C′

Thus CA =CC′ = In which, together with AC = In, shows that C is the inverse of A. This proves (1).

The proof of (5) ⇒ (1) in Theorem 2.4.5 shows that if AC = I for square matrices, then necessarily
CA = I, and hence that C and A are inverses of each other. We record this important fact for reference.

Corollary 2.4.1

If A and C are square matrices such that AC = I, then also CA = I. In particular, both A and C are
invertible, C = A−1, and A =C−1.

Here is a quick way to remember Corollary 2.4.1. If A is a square matrix, then

1. If AC = I then C = A−1.

2. If CA = I then C = A−1.

Observe that Corollary 2.4.1 is false if A and C are not square matrices. For example, we have

[
1 2 1
1 1 1

]

−1 1

1 −1
0 1


= I2 but



−1 1

1 −1
0 1



[

1 2 1
1 1 1

]
6= I3
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In fact, it is verified in the footnote on page 80 that if AB = Im and BA = In, where A is m× n and B is
n×m, then m = n and A and B are (square) inverses of each other.

An n×n matrix A has rank n if and only if (3) of Theorem 2.4.5 holds. Hence

Corollary 2.4.2

An n×n matrix A is invertible if and only if rank A = n.

Here is a useful fact about inverses of block matrices.

Example 2.4.11

Let P =

[
A X

0 B

]
and Q =

[
A 0
Y B

]
be block matrices where A is m×m and B is n×n (possibly

m 6= n).

a. Show that P is invertible if and only if A and B are both invertible. In this case, show that

P−1 =

[
A−1 −A−1XB−1

0 B−1

]

b. Show that Q is invertible if and only if A and B are both invertible. In this case, show that

Q−1 =

[
A−1 0

−B−1YA−1 B−1

]

Solution. We do (a.) and leave (b.) for the reader.

a. If A−1 and B−1 both exist, write R =

[
A−1 −A−1XB−1

0 B−1

]
. Using block multiplication, one

verifies that PR = Im+n = RP, so P is invertible, and P−1 = R. Conversely, suppose that P is

invertible, and write P−1 =

[
C V

W D

]
in block form, where C is m×m and D is n×n.

Then the equation PP−1 = In+m becomes
[

A X

0 B

][
C V

W D

]
=

[
AC+XW AV +XD

BW BD

]
= Im+n =

[
Im 0
0 In

]

using block notation. Equating corresponding blocks, we find

AC+XW = Im, BW = 0, and BD = In

Hence B is invertible because BD = In (by Corollary 2.4.1), then W = 0 because BW = 0,
and finally, AC = Im (so A is invertible, again by Corollary 2.4.1).
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Inverses of Matrix Transformations

Let T = TA : Rn→ Rn denote the matrix transformation induced by the n×n matrix A. Since A is square,
it may very well be invertible, and this leads to the question:

What does it mean geometrically for T that A is invertible?

To answer this, let T ′ = TA−1 : Rn→ Rn denote the transformation induced by A−1. Then

T ′ [T (x)] = A−1 [Ax] = Ix = x

for all x in Rn

T [T ′(x)] = A
[
A−1x

]
= Ix = x

(2.8)

The first of these equations asserts that, if T carries x to a vector T (x), then T ′ carries T (x) right back to
x; that is T ′ “reverses” the action of T . Similarly T “reverses” the action of T ′. Conditions (2.8) can be
stated compactly in terms of composition:

T ′ ◦T = 1Rn and T ◦T ′ = 1Rn (2.9)

When these conditions hold, we say that the matrix transformation T ′ is an inverse of T , and we have
shown that if the matrix A of T is invertible, then T has an inverse (induced by A−1).

The converse is also true: If T has an inverse, then its matrix A must be invertible. Indeed, suppose
S : Rn→Rn is any inverse of T , so that S◦T = 1Rn

and T ◦S = 1Rn
. It can be shown that S is also a matrix

transformation. If B is the matrix of S, we have

BAx = S [T (x)] = (S ◦T )(x) = 1Rn(x) = x = Inx for all x in Rn

It follows by Theorem 2.2.6 that BA = In, and a similar argument shows that AB = In. Hence A is invertible
with A−1 = B. Furthermore, the inverse transformation S has matrix A−1, so S = T ′ using the earlier
notation. This proves the following important theorem.

Theorem 2.4.6

Let T : Rn→ Rn denote the matrix transformation induced by an n×n matrix A. Then

A is invertible if and only if T has an inverse.

In this case, T has exactly one inverse (which we denote as T−1), and T−1 : Rn→ Rn is the
transformation induced by the matrix A−1. In other words

(TA)
−1 = TA−1

The geometrical relationship between T and T−1 is embodied in equations (2.8) above:

T−1 [T (x)] = x and T
[
T−1(x)

]
= x for all x in Rn

These equations are called the fundamental identities relating T and T−1. Loosely speaking, they assert
that each of T and T−1 “reverses” or “undoes” the action of the other.

This geometric view of the inverse of a linear transformation provides a new way to find the inverse of
a matrix A. More precisely, if A is an invertible matrix, we proceed as follows:
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1. Let T be the linear transformation induced by A.

2. Obtain the linear transformation T−1 which “reverses” the action of T .

3. Then A−1 is the matrix of T−1.

Here is an example.

Example 2.4.12

0

y = x

Q1

[
x

y

]
=

[
y

x

]

[
x

y

]

x

y

Find the inverse of A =

[
0 1
1 0

]
by viewing it as a linear

transformation R2→ R2.

Solution. If x =

[
x

y

]
the vector Ax =

[
0 1
1 0

][
x

y

]
=

[
y

x

]

is the result of reflecting x in the line y = x (see the diagram).
Hence, if Q1 : R2→ R2 denotes reflection in the line y = x, then
A is the matrix of Q1. Now observe that Q1 reverses itself because
reflecting a vector x twice results in x. Consequently Q−1

1 = Q1.
Since A−1 is the matrix of Q−1

1 and A is the matrix of Q, it follows that A−1 = A. Of course this
conclusion is clear by simply observing directly that A2 = I, but the geometric method can often
work where these other methods may be less straightforward.

Exercises for 2.4

Exercise 2.4.1 In each case, show that the matrices are
inverses of each other.

a.

[
3 5
1 2

]
,

[
2 −5
−1 3

]

b.

[
3 0
1 −4

]
, 1

2

[
4 0
1 −3

]

c.




1 2 0
0 2 3
1 3 1


,




7 2 −6
−3 −1 3

2 1 −2




d.

[
3 0
0 5

]
,

[ 1
3 0
0 1

5

]

Exercise 2.4.2 Find the inverse of each of the following
matrices.

[
1 −1
−1 3

]
a.

[
4 1
3 2

]
b.




1 0 −1
3 2 0
−1 −1 0


c.




1 −1 2
−5 7 −11
−2 3 −5


d.




3 5 0
3 7 1
1 2 1


e.




3 1 −1
2 1 0
1 5 −1


f.




2 4 1
3 3 2
4 1 4


g.




3 1 −1
5 2 0
1 1 −1


h.




3 1 2
1 −1 3
1 2 4


i.




−1 4 5 2
0 0 0 −1
1 −2 −2 0
0 −1 −1 0


j.
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


1 0 7 5
0 1 3 6
1 −1 5 2
1 −1 5 1


k.




1 2 0 0 0
0 1 3 0 0
0 0 1 5 0
0 0 0 1 7
0 0 0 0 1




l.

Exercise 2.4.3 In each case, solve the systems of equa-
tions by finding the inverse of the coefficient matrix.

3x− y= 5
2x + 2y= 1

a. 2x− 3y= 0
x− 4y= 1

b.

x + y+ 2z= 5
x + y+ z= 0
x + 2y+ 4z=−2

c. x + 4y+ 2z = 1
2x + 3y+ 3z =−1
4x + y+ 4z = 0

d.

Exercise 2.4.4 Given A−1 =




1 −1 3
2 0 5
−1 1 0


:

a. Solve the system of equations Ax =




1
−1

3


.

b. Find a matrix B such that

AB =




1 −1 2
0 1 1
1 0 0


.

c. Find a matrix C such that

CA =

[
1 2 −1
3 1 1

]
.

Exercise 2.4.5 Find A when

(3A)−1 =

[
1 −1
0 1

]
a. (2A)T =

[
1 −1
2 3

]−1

b.

(I +3A)−1 =

[
2 0
1 −1

]
c.

(I−2AT )−1 =

[
2 1
1 1

]
d.

(
A

[
1 −1
0 1

])−1

=

[
2 3
1 1

]
e.

([
1 0
2 1

]
A

)−1

=

[
1 0
2 2

]
f.

(
AT −2I

)−1
= 2

[
1 1
2 3

]
g.

(
A−1−2I

)T
=−2

[
1 1
1 0

]
h.

Exercise 2.4.6 Find A when:

A−1 =




1 −1 3
2 1 1
0 2 −2


a. A−1 =




0 1 −1
1 2 1
1 0 1


b.

Exercise 2.4.7 Given




x1

x2

x3


=




3 −1 2
1 0 4
2 1 0






y1

y2

y3




and




z1

z2

z3


 =




1 −1 1
2 −3 0
−1 1 −2






y1

y2

y3


, express the

variables x1, x2, and x3 in terms of z1, z2, and z3.

Exercise 2.4.8

a. In the system
3x+ 4y= 7
4x+ 5y= 1

, substitute the new vari-

ables x′ and y′ given by
x=−5x′ + 4y′

y= 4x′ − 3y′
. Then find

x and y.

b. Explain part (a) by writing the equations as

A

[
x

y

]
=

[
7
1

]
and

[
x

y

]
= B

[
x′

y′

]
. What is

the relationship between A and B?

Exercise 2.4.9 In each case either prove the assertion or
give an example showing that it is false.

a. If A 6= 0 is a square matrix, then A is invertible.

b. If A and B are both invertible, then A+B is invert-
ible.

c. If A and B are both invertible, then (A−1B)T is in-
vertible.

d. If A4 = 3I, then A is invertible.

e. If A2 = A and A 6= 0, then A is invertible.

f. If AB = B for some B 6= 0, then A is invertible.

g. If A is invertible and skew symmetric (AT = −A),
the same is true of A−1.

h. If A2 is invertible, then A is invertible.

i. If AB = I, then A and B commute.
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Exercise 2.4.10

a. If A, B, and C are square matrices and AB = I,
I =CA, show that A is invertible and B=C =A−1.

b. If C−1 = A, find the inverse of CT in terms of A.

Exercise 2.4.11 Suppose CA = Im, where C is m×n and
A is n×m. Consider the system Ax = b of n equations in
m variables.

a. Show that this system has a unique solution CB if
it is consistent.

b. If C =

[
0 −5 1
3 0 −1

]
and A =




2 −3
1 −2
6 −10


,

find x (if it exists) when

(i) b =




1
0
3


; and (ii) b =




7
4

22


.

Exercise 2.4.12 Verify that A =

[
1 −1
0 2

]
satisfies

A2−3A+2I = 0, and use this fact to show that
A−1 = 1

2(3I−A).

Exercise 2.4.13 Let Q=




a −b −c −d

b a −d c

c d a −b

d −c b a


. Com-

pute QQT and so find Q−1 if Q 6= 0.

Exercise 2.4.14 Let U =

[
0 1
1 0

]
. Show that each of

U ,−U , and −I2 is its own inverse and that the product of
any two of these is the third.

Exercise 2.4.15 Consider A =

[
1 1
−1 0

]
,

B =

[
0 −1
1 0

]
, C =




0 1 0
0 0 1
5 0 0


. Find the inverses

by computing (a) A6; (b) B4; and (c) C3.

Exercise 2.4.16 Find the inverse of




1 0 1
c 1 c

3 c 2


 in

terms of c.

Exercise 2.4.17 If c 6= 0, find the inverse of


1 −1 1
2 −1 2
0 2 c


 in terms of c.

Exercise 2.4.18 Show that A has no inverse when:

a. A has a row of zeros.

b. A has a column of zeros.

c. each row of A sums to 0.
[Hint: Theorem 2.4.5(2).]

d. each column of A sums to 0.

[Hint: Corollary 2.4.1, Theorem 2.4.4.]

Exercise 2.4.19 Let A denote a square matrix.

a. Let YA = 0 for some matrix Y 6= 0. Show that
A has no inverse. [Hint: Corollary 2.4.1, Theo-
rem 2.4.4.]

b. Use part (a) to show that (i)




1 −1 1
0 1 1
1 0 2


; and

(ii)




2 1 −1
1 1 0
1 0 −1


 have no inverse.

[Hint: For part (ii) compare row 3 with the differ-
ence between row 1 and row 2.]

Exercise 2.4.20 If A is invertible, show that

A2 6= 0.a. Ak 6= 0 for all
k = 1, 2, . . . .

b.

Exercise 2.4.21 Suppose AB = 0, where A and B are
square matrices. Show that:

a. If one of A and B has an inverse, the other is zero.

b. It is impossible for both A and B to have inverses.

c. (BA)2 = 0.

Exercise 2.4.22 Find the inverse of the x-expansion in
Example 2.2.16 and describe it geometrically.

Exercise 2.4.23 Find the inverse of the shear transfor-
mation in Example 2.2.17 and describe it geometrically.
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Exercise 2.4.24 In each case assume that A is a square
matrix that satisfies the given condition. Show that A is
invertible and find a formula for A−1 in terms of A.

a. A3−3A+2I = 0.

b. A4 +2A3−A−4I = 0.

Exercise 2.4.25 Let A and B denote n×n matrices.

a. If A and AB are invertible, show that B is invertible
using only (2) and (3) of Theorem 2.4.4.

b. If AB is invertible, show that both A and B are in-
vertible using Theorem 2.4.5.

Exercise 2.4.26 In each case find the inverse of the ma-
trix A using Example 2.4.11.

A=



−1 1 2

0 2 −1
0 1 −1


a. A =




3 1 0
5 2 0
1 3 −1


b.

A =




3 4 0 0
2 3 0 0
1 −1 1 3
3 1 1 4


c.

A =




2 1 5 2
1 1 −1 0
0 0 1 −1
0 0 1 −2


d.

Exercise 2.4.27 If A and B are invertible symmetric ma-
trices such that AB = BA, show that A−1, AB, AB−1, and
A−1B−1 are also invertible and symmetric.

Exercise 2.4.28 Let A be an n×n matrix and let I be the
n×n identity matrix.

a. If A2 = 0, verify that (I−A)−1 = I +A.

b. If A3 = 0, verify that (I−A)−1 = I +A+A2.

c. Find the inverse of




1 2 −1
0 1 3
0 0 1


.

d. If An = 0, find the formula for (I−A)−1.

Exercise 2.4.29 Prove property 6 of Theorem 2.4.4:
If A is invertible and a 6= 0, then aA is invertible and
(aA)−1 = 1

a
A−1

Exercise 2.4.30 Let A, B, and C denote n× n matrices.
Using only Theorem 2.4.4, show that:

a. If A, C, and ABC are all invertible, B is invertible.

b. If AB and BA are both invertible, A and B are both
invertible.

Exercise 2.4.31 Let A and B denote invertible n×n ma-
trices.

a. If A−1 = B−1, does it mean that A = B? Explain.

b. Show that A = B if and only if A−1B = I.

Exercise 2.4.32 Let A, B, and C be n×n matrices, with
A and B invertible. Show that

a. If A commutes with C, then A−1 commutes with
C.

b. If A commutes with B, then A−1 commutes with
B−1.

Exercise 2.4.33 Let A and B be square matrices of the
same size.

a. Show that (AB)2 = A2B2 if AB = BA.

b. If A and B are invertible and (AB)2 = A2B2, show
that AB = BA.

c. If A =

[
1 0
0 0

]
and B =

[
1 1
0 0

]
, show that

(AB)2 = A2B2 but AB 6= BA.

Exercise 2.4.34 Let A and B be n×n matrices for which
AB is invertible. Show that A and B are both invertible.

Exercise 2.4.35 Consider A =




1 3 −1
2 1 5
1 −7 13


,

B =




1 1 2
3 0 −3
−2 5 17


.

a. Show that A is not invertible by finding a nonzero
1×3 matrix Y such that YA = 0.

[Hint: Row 3 of A equals 2(row 2) −3(row 1).]
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b. Show that B is not invertible.

[Hint: Column 3 = 3(column 2) − column 1.]

Exercise 2.4.36 Show that a square matrix A is invert-
ible if and only if it can be left-cancelled: AB = AC im-
plies B =C.

Exercise 2.4.37 If U2 = I, show that I+U is not invert-
ible unless U = I.

Exercise 2.4.38

a. If J is the 4× 4 matrix with every entry 1, show
that I− 1

2J is self-inverse and symmetric.

b. If X is n×m and satisfies XT X = Im, show that
In−2XXT is self-inverse and symmetric.

Exercise 2.4.39 An n×n matrix P is called an idempo-
tent if P2 = P. Show that:

a. I is the only invertible idempotent.

b. P is an idempotent if and only if I− 2P is self-
inverse.

c. U is self-inverse if and only if U = I−2P for some
idempotent P.

d. I−aP is invertible for any a 6= 1, and that
(I−aP)−1 = I+

(
a

1−a

)P
.

Exercise 2.4.40 If A2 = kA, where k 6= 0, show that A is
invertible if and only if A = kI.

Exercise 2.4.41 Let A and B denote n×n invertible ma-
trices.

a. Show that A−1 +B−1 = A−1(A+B)B−1.

b. If A+B is also invertible, show that A−1 +B−1 is
invertible and find a formula for (A−1 +B−1)−1.

Exercise 2.4.42 Let A and B be n×n matrices, and let I

be the n×n identity matrix.

a. Verify that A(I +BA) = (I +AB)A and that
(I +BA)B = B(I+AB).

b. If I+AB is invertible, verify that I+BA is also in-
vertible and that (I+BA)−1 = I−B(I+AB)−1A.

2.5 Elementary Matrices

It is now clear that elementary row operations are important in linear algebra: They are essential in solving
linear systems (using the gaussian algorithm) and in inverting a matrix (using the matrix inversion algo-
rithm). It turns out that they can be performed by left multiplying by certain invertible matrices. These
matrices are the subject of this section.

Definition 2.12 Elementary Matrices

An n×n matrix E is called an elementary matrix if it can be obtained from the identity matrix In

by a single elementary row operation (called the operation corresponding to E). We say that E is
of type I, II, or III if the operation is of that type (see Definition 1.2).

Hence

E1 =

[
0 1
1 0

]
, E2 =

[
1 0
0 9

]
, and E3 =

[
1 5
0 1

]

are elementary of types I, II, and III, respectively, obtained from the 2×2 identity matrix by interchanging
rows 1 and 2, multiplying row 2 by 9, and adding 5 times row 2 to row 1.
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Suppose now that the matrix A =

[
a b c

p q r

]
is left multiplied by the above elementary matrices E1,

E2, and E3. The results are:

E1A =

[
0 1
1 0

][
a b c

p q r

]
=

[
p q r

a b c

]

E2A =

[
1 0
0 9

][
a b c

p q r

]
=

[
a b c

9p 9q 9r

]

E3A =

[
1 5
0 1

][
a b c

p q r

]
=

[
a+5p b+5q c+5r

p q r

]

In each case, left multiplying A by the elementary matrix has the same effect as doing the corresponding
row operation to A. This works in general.

Lemma 2.5.1: 10

If an elementary row operation is performed on an m×n matrix A, the result is EA where E is the
elementary matrix obtained by performing the same operation on the m×m identity matrix.

Proof. We prove it for operations of type III; the proofs for types I and II are left as exercises. Let E be the
elementary matrix corresponding to the operation that adds k times row p to row q 6= p. The proof depends
on the fact that each row of EA is equal to the corresponding row of E times A. Let K1, K2, . . . , Km denote
the rows of Im. Then row i of E is Ki if i 6= q, while row q of E is Kq + kKp. Hence:

If i 6= q then row i of EA = KiA = (row i of A).

Row q of EA = (Kq + kKp)A = KqA+ k(KpA)

= (row q of A) plus k (row p of A).

Thus EA is the result of adding k times row p of A to row q, as required.

The effect of an elementary row operation can be reversed by another such operation (called its inverse)
which is also elementary of the same type (see the discussion following (Example 1.1.3). It follows that
each elementary matrix E is invertible. In fact, if a row operation on I produces E, then the inverse
operation carries E back to I. If F is the elementary matrix corresponding to the inverse operation, this
means FE = I (by Lemma 2.5.1). Thus F = E−1 and we have proved

Lemma 2.5.2

Every elementary matrix E is invertible, and E−1 is also a elementary matrix (of the same type).
Moreover, E−1 corresponds to the inverse of the row operation that produces E.

The following table gives the inverse of each type of elementary row operation:

Type Operation Inverse Operation

I Interchange rows p and q Interchange rows p and q

II Multiply row p by k 6= 0 Multiply row p by 1/k, k 6= 0
III Add k times row p to row q 6= p Subtract k times row p from row q, q 6= p

10A lemma is an auxiliary theorem used in the proof of other theorems.
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Note that elementary matrices of type I are self-inverse.

Example 2.5.1

Find the inverse of each of the elementary matrices

E1 =




0 1 0
1 0 0
0 0 1


 , E2 =




1 0 0
0 1 0
0 0 9


 , and E3 =




1 0 5
0 1 0
0 0 1


 .

Solution. E1, E2, and E3 are of type I, II, and III respectively, so the table gives

E−1
1 =




0 1 0
1 0 0
0 0 1


= E1, E−1

2 =




1 0 0
0 1 0
0 0 1

9


 , and E−1

3 =




1 0 −5
0 1 0
0 0 1


 .

Inverses and Elementary Matrices

Suppose that an m×n matrix A is carried to a matrix B (written A→ B) by a series of k elementary row
operations. Let E1, E2, . . . , Ek denote the corresponding elementary matrices. By Lemma 2.5.1, the
reduction becomes

A→ E1A→ E2E1A→ E3E2E1A→ ·· · → EkEk−1 · · ·E2E1A = B

In other words,
A→UA = B where U = EkEk−1 · · ·E2E1

The matrix U = EkEk−1 · · ·E2E1 is invertible, being a product of invertible matrices by Lemma 2.5.2.
Moreover, U can be computed without finding the Ei as follows: If the above series of operations carrying
A→ B is performed on Im in place of A, the result is Im→UIm =U . Hence this series of operations carries
the block matrix

[
A Im

]
→
[

B U
]
. This, together with the above discussion, proves

Theorem 2.5.1

Suppose A is m×n and A→ B by elementary row operations.

1. B =UA where U is an m×m invertible matrix.

2. U can be computed by
[

A Im

]
→
[

B U
]

using the operations carrying A→ B.

3. U = EkEk−1 · · ·E2E1 where E1, E2, . . . , Ek are the elementary matrices corresponding (in
order) to the elementary row operations carrying A to B.
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Example 2.5.2

If A =

[
2 3 1
1 2 1

]
, express the reduced row-echelon form R of A as R =UA where U is invertible.

Solution. Reduce the double matrix
[

A I
]
→
[

R U
]

as follows:

[
A I

]
=

[
2 3 1 1 0
1 2 1 0 1

]
→
[

1 2 1 0 1
2 3 1 1 0

]
→
[

1 2 1 0 1
0 −1 −1 1 −2

]

→
[

1 0 −1 2 −3
0 1 1 −1 2

]

Hence R =

[
1 0 −1
0 1 1

]
and U =

[
2 −3
−1 2

]
.

Now suppose that A is invertible. We know that A→ I by Theorem 2.4.5, so taking B = I in Theo-
rem 2.5.1 gives

[
A I

]
→
[

I U
]

where I =UA. Thus U = A−1, so we have
[

A I
]
→
[

I A−1
]
.

This is the matrix inversion algorithm in Section 2.4. However, more is true: Theorem 2.5.1 gives
A−1 =U = EkEk−1 · · ·E2E1 where E1, E2, . . . , Ek are the elementary matrices corresponding (in order) to
the row operations carrying A→ I. Hence

A =
(
A−1)−1

= (EkEk−1 · · ·E2E1)
−1 = E−1

1 E−1
2 · · ·E−1

k−1E−1
k (2.10)

By Lemma 2.5.2, this shows that every invertible matrix A is a product of elementary matrices. Since
elementary matrices are invertible (again by Lemma 2.5.2), this proves the following important character-
ization of invertible matrices.

Theorem 2.5.2

A square matrix is invertible if and only if it is a product of elementary matrices.

It follows from Theorem 2.5.1 that A→ B by row operations if and only if B =UA for some invertible
matrix B. In this case we say that A and B are row-equivalent. (See Exercise 2.5.17.)

Example 2.5.3

Express A =

[
−2 3

1 0

]
as a product of elementary matrices.

Solution. Using Lemma 2.5.1, the reduction of A→ I is as follows:

A =

[
−2 3

1 0

]
→ E1A =

[
1 0
−2 3

]
→ E2E1A =

[
1 0
0 3

]
→ E3E2E1A =

[
1 0
0 1

]

where the corresponding elementary matrices are

E1 =

[
0 1
1 0

]
, E2 =

[
1 0
2 1

]
, E3 =

[
1 0
0 1

3

]
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Hence (E3 E2 E1)A = I, so:

A = (E3E2E1)
−1 = E−1

1 E−1
2 E−1

3 =

[
0 1
1 0

][
1 0
−2 1

][
1 0
0 3

]

Smith Normal Form

Let A be an m×n matrix of rank r, and let R be the reduced row-echelon form of A. Theorem 2.5.1 shows
that R =UA where U is invertible, and that U can be found from

[
A Im

]
→
[

R U
]
.

The matrix R has r leading ones (since rank A = r) so, as R is reduced, the n×m matrix RT con-

tains each row of Ir in the first r columns. Thus row operations will carry RT →
[

Ir 0
0 0

]

n×m

. Hence

Theorem 2.5.1 (again) shows that

[
Ir 0
0 0

]

n×m

= U1RT where U1 is an n×n invertible matrix. Writing

V =UT
1 , we obtain

UAV = RV = RUT
1 =

(
U1RT

)T
=

([
Ir 0
0 0

]

n×m

)T

=

[
Ir 0
0 0

]

m×n

Moreover, the matrix U1 =V T can be computed by
[

RT In

]
→
[[

Ir 0
0 0

]

n×m

V T

]
. This proves

Theorem 2.5.3

Let A be an m×n matrix of rank r. There exist invertible matrices U and V of size m×m and
n×n, respectively, such that

UAV =

[
Ir 0
0 0

]

m×n

Moreover, if R is the reduced row-echelon form of A, then:

1. U can be computed by
[

A Im

]
→
[

R U
]
;

2. V can be computed by
[

RT In

]
→
[[

Ir 0
0 0

]

n×m

V T

]
.

If A is an m× n matrix of rank r, the matrix

[
Ir 0
0 0

]
is called the Smith normal form11 of A.

Whereas the reduced row-echelon form of A is the “nicest” matrix to which A can be carried by row
operations, the Smith canonical form is the “nicest” matrix to which A can be carried by row and column

operations. This is because doing row operations to RT amounts to doing column operations to R and then
transposing.

11Named after Henry John Stephen Smith (1826–83).
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Example 2.5.4

Given A =




1 −1 1 2
2 −2 1 −1
−1 1 0 3


, find invertible matrices U and V such that UAV =

[
Ir 0
0 0

]
,

where r = rank A.

Solution. The matrix U and the reduced row-echelon form R of A are computed by the row
reduction

[
A I3

]
→
[

R U
]
:




1 −1 1 2 1 0 0
2 −2 1 −1 0 1 0
−1 1 0 3 0 0 1


→




1 −1 0 −3 −1 1 0
0 0 1 5 2 −1 0
0 0 0 0 −1 1 1




Hence

R =




1 −1 0 −3
0 0 1 5
0 0 0 0


 and U =



−1 1 0

2 −1 0
−1 1 1




In particular, r = rank R = 2. Now row-reduce
[

RT I4
]
→
[ [

Ir 0
0 0

]
V T

]
:




1 0 0 1 0 0 0
−1 0 0 0 1 0 0

0 1 0 0 0 1 0
−3 5 0 0 0 0 1


→




1 0 0 1 0 0 0
0 1 0 0 0 1 0
0 0 0 1 1 0 0
0 0 0 3 0 −5 1




whence

V T =




1 0 0 0
0 0 1 0
1 1 0 0
3 0 −5 −1


 so V =




1 0 1 3
0 0 1 0
0 1 0 −5
0 0 0 1




Then UAV =

[
I2 0
0 0

]
as is easily verified.

Uniqueness of the Reduced Row-echelon Form

In this short subsection, Theorem 2.5.1 is used to prove the following important theorem.

Theorem 2.5.4

If a matrix A is carried to reduced row-echelon matrices R and S by row operations, then R = S.

Proof. Observe first that UR = S for some invertible matrix U (by Theorem 2.5.1 there exist invertible
matrices P and Q such that R = PA and S = QA; take U = QP−1). We show that R = S by induction on
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the number m of rows of R and S. The case m = 1 is left to the reader. If R j and S j denote column j in R

and S respectively, the fact that UR = S gives

UR j = S j for each j (2.11)

Since U is invertible, this shows that R and S have the same zero columns. Hence, by passing to the
matrices obtained by deleting the zero columns from R and S, we may assume that R and S have no zero
columns.

But then the first column of R and S is the first column of Im because R and S are row-echelon, so
(2.11) shows that the first column of U is column 1 of Im. Now write U , R, and S in block form as follows.

U =

[
1 X

0 V

]
, R =

[
1 X

0 R′

]
, and S =

[
1 Z

0 S′

]

Since UR = S, block multiplication gives V R′ = S′ so, since V is invertible (U is invertible) and both R′

and S′ are reduced row-echelon, we obtain R′ = S′ by induction. Hence R and S have the same number
(say r) of leading 1s, and so both have m–r zero rows.

In fact, R and S have leading ones in the same columns, say r of them. Applying (2.11) to these
columns shows that the first r columns of U are the first r columns of Im. Hence we can write U , R, and S

in block form as follows:

U =

[
Ir M

0 W

]
, R =

[
R1 R2

0 0

]
, and S =

[
S1 S2

0 0

]

where R1 and S1 are r× r. Then block multiplication gives UR = R; that is, S = R. This completes the
proof.

Exercises for 2.5

Exercise 2.5.1 For each of the following elementary
matrices, describe the corresponding elementary row op-
eration and write the inverse.

E =




1 0 3
0 1 0
0 0 1


a. E =




0 0 1
0 1 0
1 0 0


b.

E =




1 0 0
0 1

2 0
0 0 1


c. E =




1 0 0
−2 1 0

0 0 1


d.

E =




0 1 0
1 0 0
0 0 1


e. E =




1 0 0
0 1 0
0 0 5


f.

Exercise 2.5.2 In each case find an elementary matrix
E such that B = EA.

a. A =

[
2 1
3 −1

]
, B =

[
2 1
1 −2

]

b. A =

[
−1 2

0 1

]
, B =

[
1 −2
0 1

]

c. A =

[
1 1
−1 2

]
, B =

[
−1 2

1 1

]

d. A =

[
4 1
3 2

]
, B =

[
1 −1
3 2

]

e. A =

[
−1 1

1 −1

]
, B =

[
−1 1
−1 1

]
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f. A =

[
2 1
−1 3

]
, B =

[
−1 3

2 1

]

Exercise 2.5.3 Let A =

[
1 2
−1 1

]
and

C =

[
−1 1

2 1

]
.

a. Find elementary matrices E1 and E2 such that
C = E2E1A.

b. Show that there is no elementary matrix E such
that C = EA.

Exercise 2.5.4 If E is elementary, show that A and EA

differ in at most two rows.

Exercise 2.5.5

a. Is I an elementary matrix? Explain.

b. Is 0 an elementary matrix? Explain.

Exercise 2.5.6 In each case find an invertible matrix U

such that UA = R is in reduced row-echelon form, and
express U as a product of elementary matrices.

A =

[
1 −1 2
−2 1 0

]
a. A =

[
1 2 1
5 12 −1

]
b.

A =




1 2 −1 0
3 1 1 2
1 −3 3 2


c.

A =




2 1 −1 0
3 −1 2 1
1 −2 3 1


d.

Exercise 2.5.7 In each case find an invertible matrix U

such that UA = B, and express U as a product of elemen-
tary matrices.

a. A =

[
2 1 3
−1 1 2

]
, B =

[
1 −1 −2
3 0 1

]

b. A =

[
2 −1 0
1 1 1

]
, B =

[
3 0 1
2 −1 0

]

Exercise 2.5.8 In each case factor A as a product of el-
ementary matrices.

A =

[
1 1
2 1

]
a. A =

[
2 3
1 2

]
b.

A =




1 0 2
0 1 1
2 1 6


c. A=




1 0 −3
0 1 4
−2 2 15


d.

Exercise 2.5.9 Let E be an elementary matrix.

a. Show that ET is also elementary of the same type.

b. Show that ET = E if E is of type I or II.

Exercise 2.5.10 Show that every matrix A can be fac-
tored as A=UR where U is invertible and R is in reduced
row-echelon form.

Exercise 2.5.11 If A =

[
1 2
1 −3

]
and

B =

[
5 2
−5 −3

]
find an elementary matrix F such that

AF = B.

[Hint: See Exercise 2.5.9.]

Exercise 2.5.12 In each case find invertible U and V

such that UAV =

[
Ir 0
0 0

]
, where r = rank A.

A=

[
1 1 −1
−2 −2 4

]
a. A =

[
3 2
2 1

]
b.

A =




1 −1 2 1
2 −1 0 3
0 1 −4 1


c.

A =




1 1 0 −1
3 2 1 1
1 0 1 3


d.

Exercise 2.5.13 Prove Lemma 2.5.1 for elementary ma-
trices of:

type I;a. type II.b.

Exercise 2.5.14 While trying to invert A,
[

A I
]

is carried to
[

P Q
]

by row operations. Show that
P = QA.

Exercise 2.5.15 If A and B are n×n matrices and AB is
a product of elementary matrices, show that the same is
true of A.
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Exercise 2.5.16 If U is invertible, show that the reduced
row-echelon form of a matrix

[
U A

]
is
[

I U−1A
]
.

Exercise 2.5.17 Two matrices A and B are called row-

equivalent (written A
r∼ B) if there is a sequence of ele-

mentary row operations carrying A to B.

a. Show that A
r∼ B if and only if A = UB for some

invertible matrix U .

b. Show that:

i. A
r∼ A for all matrices A.

ii. If A
r∼ B, then B

r∼ A

iii. If A
r∼ B and B

r∼C, then A
r∼C.

c. Show that, if A and B are both row-equivalent to
some third matrix, then A

r∼ B.

d. Show that




1 −1 3 2
0 1 4 1
1 0 8 6


 and




1 −1 4 5
−2 1 −11 −8
−1 2 2 2


 are row-equivalent.

[Hint: Consider (c) and Theorem 1.2.1.]

Exercise 2.5.18 If U and V are invertible n×n matrices,
show that U

r∼V . (See Exercise 2.5.17.)

Exercise 2.5.19 (See Exercise 2.5.17.) Find all matrices
that are row-equivalent to:

[
0 0 0
0 0 0

]
a.

[
0 0 0
0 0 1

]
b.

[
1 0 0
0 1 0

]
c.

[
1 2 0
0 0 1

]
d.

Exercise 2.5.20 Let A and B be m×n and n×m matri-
ces, respectively. If m > n, show that AB is not invertible.
[Hint: Use Theorem 1.3.1 to find x 6= 0 with Bx = 0.]

Exercise 2.5.21 Define an elementary column operation

on a matrix to be one of the following: (I) Interchange
two columns. (II) Multiply a column by a nonzero scalar.
(III) Add a multiple of a column to another column.
Show that:

a. If an elementary column operation is done to an
m× n matrix A, the result is AF , where F is an
n×n elementary matrix.

b. Given any m× n matrix A, there exist m×m ele-
mentary matrices E1, . . . , Ek and n×n elementary
matrices F1, . . . , Fp such that, in block form,

Ek · · ·E1AF1 · · ·Fp =

[
Ir 0
0 0

]

Exercise 2.5.22 Suppose B is obtained from A by:

a. interchanging rows i and j;

b. multiplying row i by k 6= 0;

c. adding k times row i to row j (i 6= j).

In each case describe how to obtain B−1 from A−1.
[Hint: See part (a) of the preceding exercise.]

Exercise 2.5.23 Two m×n matrices A and B are called
equivalent (written A

e∼ B) if there exist invertible matri-
ces U and V (sizes m×m and n×n) such that A =UBV .

a. Prove the following the properties of equivalence.

i. A
e∼ A for all m×n matrices A.

ii. If A
e∼ B, then B

e∼ A.

iii. If A
e∼ B and B

e∼C, then A
e∼C.

b. Prove that two m× n matrices are equivalent if
they have the same rank . [Hint: Use part (a) and
Theorem 2.5.3.]
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2.6 Linear Transformations

If A is an m×n matrix, recall that the transformation TA : Rn→ Rm defined by

TA(x) = Ax for all x in Rn

is called the matrix transformation induced by A. In Section 2.2, we saw that many important geometric
transformations were in fact matrix transformations. These transformations can be characterized in a
different way. The new idea is that of a linear transformation, one of the basic notions in linear algebra. We
define these transformations in this section, and show that they are really just the matrix transformations
looked at in another way. Having these two ways to view them turns out to be useful because, in a given
situation, one perspective or the other may be preferable.

Linear Transformations

Definition 2.13 Linear Transformations Rn→ Rm

A transformation T : Rn→ Rm is called a linear transformation if it satisfies the following two
conditions for all vectors x and y in Rn and all scalars a:

T1 T (x+y) = T (x)+T (y)

T2 T (ax) = aT (x)

Of course, x+y and ax here are computed in Rn, while T (x)+T (y) and aT (x) are in Rm. We say that T

preserves addition if T1 holds, and that T preserves scalar multiplication if T2 holds. Moreover, taking
a = 0 and a =−1 in T2 gives

T (0) = 0 and T (−x) =−T (x) for all x

Hence T preserves the zero vector and the negative of a vector. Even more is true.

Recall that a vector y in Rn is called a linear combination of vectors x1, x2, . . . , xk if y has the form

y = a1x1 +a2x2 + · · ·+akxk

for some scalars a1, a2, . . . , ak. Conditions T1 and T2 combine to show that every linear transformation
T preserves linear combinations in the sense of the following theorem. This result is used repeatedly in
linear algebra.

Theorem 2.6.1: Linearity Theorem

If T : Rn→ Rm is a linear transformation, then for each k = 1, 2, . . .

T (a1x1 +a2x2 + · · ·+akxk) = a1T (x1)+a2T (x2)+ · · ·+akT (xk)

for all scalars ai and all vectors xi in Rn.
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Proof. If k = 1, it reads T (a1x1) = a1T (x1) which is Condition T1. If k = 2, we have

T (a1x1 +a2x2) = T (a1x1)+T (a2x2) by Condition T1
= a1T (x1)+a2T (x2) by Condition T2

If k = 3, we use the case k = 2 to obtain

T (a1x1 +a2x2 +a3x3) = T [(a1x1 +a2x2)+a3x3] collect terms
= T (a1x1 +a2x2)+T (a3x3) by Condition T1
= [a1T (x1)+a2T (x2)]+T (a3x3) by the case k = 2
= [a1T (x1)+a2T (x2)]+a3T (x3) by Condition T2

The proof for any k is similar, using the previous case k−1 and Conditions T1 and T2.

The method of proof in Theorem 2.6.1 is called mathematical induction (Appendix C).

Theorem 2.6.1 shows that if T is a linear transformation and T (x1), T (x2), . . . , T (xk) are all known,
then T (y) can be easily computed for any linear combination y of x1, x2, . . . , xk. This is a very useful
property of linear transformations, and is illustrated in the next example.

Example 2.6.1

If T : R2→R2 is a linear transformation, T

[
1
1

]
=

[
2
−3

]
and T

[
1
−2

]
=

[
5
1

]
, find T

[
4
3

]
.

Solution. Write z =

[
4
3

]
, x =

[
1
1

]
, and y =

[
1
−2

]
for convenience. Then we know T (x) and

T (y) and we want T (z), so it is enough by Theorem 2.6.1 to express z as a linear combination of x

and y. That is, we want to find numbers a and b such that z = ax+by. Equating entries gives two
equations 4 = a+b and 3 = a−2b. The solution is, a = 11

3 and b = 1
3 , so z = 11

3 x+ 1
3y. Thus

Theorem 2.6.1 gives

T (z) = 11
3 T (x)+ 1

3T (y) = 11
3

[
2
−3

]
+ 1

3

[
5
1

]
= 1

3

[
27
−32

]

This is what we wanted.

Example 2.6.2

If A is m×n, the matrix transformation TA : Rn→Rm, is a linear transformation.

Solution. We have TA(x) = Ax for all x in Rn, so Theorem 2.2.2 gives

TA(x+y) = A(x+y) = Ax+Ay = TA(x)+TA(y)

and
TA(ax) = A(ax) = a(Ax) = aTA(x)

hold for all x and y in Rn and all scalars a. Hence TA satisfies T1 and T2, and so is linear.
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The remarkable thing is that the converse of Example 2.6.2 is true: Every linear transformation
T : Rn→ Rm is actually a matrix transformation. To see why, we define the standard basis of Rn to be
the set of columns

{e1, e2, . . . , en}

of the identity matrix In. Then each ei is in Rn and every vector x =




x1

x2
...

xn


 in Rn is a linear combination

of the ei. In fact:
x = x1e1 + x2e2 + · · ·+ xnen

as the reader can verify. Hence Theorem 2.6.1 shows that

T (x) = T (x1e1 + x2e2 + · · ·+ xnen) = x1T (e1)+ x2T (e2)+ · · ·+ xnT (en)

Now observe that each T (ei) is a column in Rm, so

A =
[

T (e1) T (e2) · · · T (en)
]

is an m×n matrix. Hence we can apply Definition 2.5 to get

T (x) = x1T (e1)+ x2T (e2)+ · · ·+ xnT (en) =
[

T (e1) T (e2) · · · T (en)
]




x1

x2
...

xn


= Ax

Since this holds for every x in Rn, it shows that T is the matrix transformation induced by A, and so proves
most of the following theorem.

Theorem 2.6.2

Let T : Rn→ Rm be a transformation.

1. T is linear if and only if it is a matrix transformation.

2. In this case T = TA is the matrix transformation induced by a unique m×n matrix A, given
in terms of its columns by

A =
[

T (e1) T (e2) · · · T (en)
]

where {e1, e2, . . . , en} is the standard basis of Rn.

Proof. It remains to verify that the matrix A is unique. Suppose that T is induced by another matrix B.
Then T (x) = Bx for all x in Rn. But T (x) = Ax for each x, so Bx = Ax for every x. Hence A = B by
Theorem 2.2.6.

Hence we can speak of the matrix of a linear transformation. Because of Theorem 2.6.2 we may (and
shall) use the phrases “linear transformation” and “matrix transformation” interchangeably.
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Example 2.6.3

Define T : R3→ R2 by T




x1

x2

x3


=

[
x1

x2

]
for all




x1

x2

x3


 in R3. Show that T is a linear

transformation and use Theorem 2.6.2 to find its matrix.

Solution. Write x =




x1

x2

x3


 and y =




y1

y2

y3


, so that x+y =




x1 + y1

x2 + y2

x3 + y3


. Hence

T (x+y) =

[
x1 + y1

x2 + y2

]
=

[
x1

x2

]
+

[
y1

y2

]
= T (x)+T (y)

Similarly, the reader can verify that T (ax) = aT (x) for all a in R, so T is a linear transformation.
Now the standard basis of R3 is

e1 =




1
0
0


 , e2 =




0
1
0


 , and e3 =




0
0
1




so, by Theorem 2.6.2, the matrix of T is

A =
[

T (e1) T (e2) T (e3)
]
=

[
1 0 0
0 1 0

]

Of course, the fact that T




x1

x2

x3


=

[
x1

x2

]
=

[
1 0 0
0 1 0

]


x1

x2

x3


 shows directly that T is a

matrix transformation (hence linear) and reveals the matrix.

To illustrate how Theorem 2.6.2 is used, we rederive the matrices of the transformations in Exam-
ples 2.2.13 and 2.2.15.

Example 2.6.4

Let Q0 : R2→R2 denote reflection in the x axis (as in Example 2.2.13) and let Rπ
2

: R2→ R2

denote counterclockwise rotation through π
2 about the origin (as in Example 2.2.15). Use

Theorem 2.6.2 to find the matrices of Q0 and Rπ
2

.

0 e1

e2

[
0
1

]

[
1
0

]

x

y

Figure 2.6.1

Solution. Observe that Q0 and Rπ
2

are linear by Example 2.6.2

(they are matrix transformations), so Theorem 2.6.2 applies

to them. The standard basis of R2 is {e1, e2} where e1 =

[
1
0

]

points along the positive x axis, and e2 =

[
0
1

]
points along

the positive y axis (see Figure 2.6.1).
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The reflection of e1 in the x axis is e1 itself because e1 points along the x axis, and the reflection
of e2 in the x axis is −e2 because e2 is perpendicular to the x axis. In other words, Q0(e1) = e1 and
Q0(e2) =−e2. Hence Theorem 2.6.2 shows that the matrix of Q0 is

[
Q0(e1) Q0(e2)

]
=
[

e1 −e2
]
=

[
1 0
0 −1

]

which agrees with Example 2.2.13.
Similarly, rotating e1 through π

2 counterclockwise about the origin produces e2, and rotating e2

through π
2 counterclockwise about the origin gives −e1. That is, Rπ

2
(e1) = e2 and Rπ

2
(e2) =−e2.

Hence, again by Theorem 2.6.2, the matrix of Rπ
2

is

[
Rπ

2
(e1) Rπ

2
(e2)

]
=
[

e2 −e1
]
=

[
0 −1
1 0

]

agreeing with Example 2.2.15.

Example 2.6.5

e1

e2

0

y = x

T

[
x

y

]
=

[
y

x

]

[
x

y

]

x

y

Figure 2.6.2

Let Q1 : R2→ R2 denote reflection in the line y = x. Show that
Q1 is a matrix transformation, find its matrix, and use it to illustrate
Theorem 2.6.2.

Solution. Figure 2.6.2 shows that Q1

[
x

y

]
=

[
y

x

]
. Hence

Q1

[
x

y

]
=

[
0 1
1 0

][
y

x

]
, so Q1 is the matrix transformation

induced by the matrix A =

[
0 1
1 0

]
. Hence Q1 is linear (by

Example 2.6.2) and so Theorem 2.6.2 applies. If e1 =

[
1
0

]
and e2 =

[
0
1

]
are the standard basis

of R2, then it is clear geometrically that Q1(e1) = e2 and Q1(e2) = e1. Thus (by Theorem 2.6.2)
the matrix of Q1 is

[
Q1(e1) Q1(e2)

]
=
[

e2 e1
]
= A as before.

Recall that, given two “linked” transformations

Rk T−→Rn S−→ Rm

we can apply T first and then apply S, and so obtain a new transformation

S ◦T : Rk→ Rm

called the composite of S and T , defined by

(S ◦T )(x) = S [T (x)] for all x in Rk

If S and T are linear, the action of S ◦T can be computed by multiplying their matrices.
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Theorem 2.6.3

Let Rk T−→ Rn S−→ Rm be linear transformations, and let A and B be the matrices of S and T

respectively. Then S ◦T is linear with matrix AB.

Proof. (S ◦T )(x) = S [T (x)] = A [Bx] = (AB)x for all x in Rk.

Theorem 2.6.3 shows that the action of the composite S ◦ T is determined by the matrices of S and
T . But it also provides a very useful interpretation of matrix multiplication. If A and B are matrices, the
product matrix AB induces the transformation resulting from first applying B and then applying A. Thus
the study of matrices can cast light on geometrical transformations and vice-versa. Here is an example.

Example 2.6.6

Show that reflection in the x axis followed by rotation through π
2 is reflection in the line y = x.

Solution. The composite in question is Rπ
2
◦Q0 where Q0 is reflection in the x axis and Rπ

2
is

rotation through π
2 . By Example 2.6.4, Rπ

2
has matrix A =

[
0 −1
1 0

]
and Q0 has matrix

B =

[
1 0
0 −1

]
. Hence Theorem 2.6.3 shows that the matrix of Rπ

2
◦Q0 is

AB =

[
0 −1
1 0

][
1 0
0 −1

]
=

[
0 1
1 0

]
, which is the matrix of reflection in the line y = x by

Example 2.6.3.

This conclusion can also be seen geometrically. Let x be a typical point in R2, and assume that x

makes an angle α with the positive x axis. The effect of first applying Q0 and then applying Rπ
2

is shown

in Figure 2.6.3. The fact that Rπ
2
[Q0(x)] makes the angle α with the positive y axis shows that Rπ

2
[Q0(x)]

is the reflection of x in the line y = x.

α

x

0 x

y

α

Q0(x)

x

0 x

y

α

α

y = xR π
2
[Q0(x)]

Q0(x)

x

0 x

y

Figure 2.6.3

In Theorem 2.6.3, we saw that the matrix of the composite of two linear transformations is the product
of their matrices (in fact, matrix products were defined so that this is the case). We are going to apply
this fact to rotations, reflections, and projections in the plane. Before proceeding, we pause to present
useful geometrical descriptions of vector addition and scalar multiplication in the plane, and to give a
short review of angles and the trigonometric functions.
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− 1
2 x =

[
− 1

2
−1

]0

1
2 x =

[
1
2
1

]
x =

[
1
2

]

2x =

[
2
4

]

x1

x2

Figure 2.6.4

Some Geometry

As we have seen, it is convenient to view a vector x in R2 as an arrow
from the origin to the point x (see Section 2.2). This enables us to visualize
what sums and scalar multiples mean geometrically. For example consider

x =

[
1
2

]
in R2. Then 2x =

[
2
4

]
, 1

2x =

[
1
2
1

]
and −1

2x =

[
−1

2
−1

]
, and

these are shown as arrows in Figure 2.6.4.

Observe that the arrow for 2x is twice as long as the arrow for x and in
the same direction, and that the arrows for 1

2x is also in the same direction
as the arrow for x, but only half as long. On the other hand, the arrow
for −1

2x is half as long as the arrow for x, but in the opposite direction.
More generally, we have the following geometrical description of scalar
multiplication in R2:

0

x =
[

2
1

]

y =
[

1
3

] x+ y =
[

3
4

]

x1

x2

Figure 2.6.5

Scalar Multiple Law

Let x be a vector in R2. The arrow for kx is |k| times12as long as
the arrow for x, and is in the same direction as the arrow for x if
k > 0, and in the opposite direction if k < 0.

0

x

y

x+ y

x1

x2

Figure 2.6.6

Now consider two vectors x =

[
2
1

]
and y =

[
1
3

]
in R2. They are

plotted in Figure 2.6.5 along with their sum x+y =

[
3
4

]
. It is a routine

matter to verify that the four points 0, x, y, and x+y form the vertices of a
parallelogram–that is opposite sides are parallel and of the same length.
(The reader should verify that the side from 0 to x has slope of 1

2 , as does
the side from y to x + y, so these sides are parallel.) We state this as
follows:

θ1

0

Radian
measure

of θp

x

y

Figure 2.6.7

Parallelogram Law

Consider vectors x and y in R2. If the arrows for x and y are drawn
(see Figure 2.6.6), the arrow for x+y corresponds to the fourth
vertex of the parallelogram determined by the points x, y, and 0.

We will have more to say about this in Chapter 4.

Before proceeding we turn to a brief review of angles and the trigono-
metric functions. Recall that an angle θ is said to be in standard position if it is measured counterclock-
wise from the positive x axis (as in Figure 2.6.7). Then θ uniquely determines a point p on the unit circle

12If k is a real number, |k| denotes the absolute value of k; that is, |k|= k if k ≥ 0 and |k|=−k if k < 0.
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(radius 1, centre at the origin). The radian measure of θ is the length of the arc on the unit circle from the
positive x axis to p. Thus 360◦ = 2π radians, 180◦ = π , 90◦ = π

2 , and so on.

The point p in Figure 2.6.7 is also closely linked to the trigonometric functions cosine and sine, written
cosθ and sinθ respectively. In fact these functions are defined to be the x and y coordinates of p; that is

p =

[
cosθ
sinθ

]
. This defines cosθ and sinθ for the arbitrary angle θ (possibly negative), and agrees with

the usual values when θ is an acute angle
(
0≤ θ ≤ π

2

)
as the reader should verify. For more discussion

of this, see Appendix A.

Rotations

θ

Rθ (x)

x

0
x

y

Figure 2.6.8

We can now describe rotations in the plane. Given an angle θ , let

Rθ : R2→R2

denote counterclockwise rotation of R2 about the origin through the angle
θ . The action of Rθ is depicted in Figure 2.6.8. We have already looked
at Rπ

2
(in Example 2.2.15) and found it to be a matrix transformation.

It turns out that Rθ is a matrix transformation for every angle θ (with a
simple formula for the matrix), but it is not clear how to find the matrix.
Our approach is to first establish the (somewhat surprising) fact that Rθ is
linear, and then obtain the matrix from Theorem 2.6.2.

θ x

y

x+ yRθ (x)

Rθ (y)

Rθ (x+ y)

0
x

y

Figure 2.6.9

Let x and y be two vectors in R2. Then x+ y is the diagonal of the
parallelogram determined by x and y as in Figure 2.6.9.

The effect of Rθ is to rotate the entire parallelogram to obtain the new
parallelogram determined by Rθ (x) and Rθ (y), with diagonal Rθ (x+ y).
But this diagonal is Rθ (x)+Rθ (y) by the parallelogram law (applied to
the new parallelogram). It follows that

Rθ (x+y) = Rθ (x)+Rθ (y)

A similar argument shows that Rθ (ax) = aRθ (x) for any scalar a, so
Rθ : R2→ R2 is indeed a linear transformation.

θ

θ

0 e1

e2

Rθ (e1)
Rθ (e2)

cos θ

sin θ

cos θ
sin θ

11
x

y

Figure 2.6.10

With linearity established we can find the matrix of Rθ . Let e1 =

[
1
0

]

and e2 =

[
0
1

]
denote the standard basis of R2. By Figure 2.6.10 we see

that

Rθ (e1) =

[
cosθ
sinθ

]
and Rθ (e2) =

[
−sinθ

cosθ

]

Hence Theorem 2.6.2 shows that Rθ is induced by the matrix

[
Rθ (e1) Rθ (e2)

]
=

[
cosθ −sinθ
sinθ cosθ

]
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We record this as

Theorem 2.6.4

The rotation Rθ : R2→ R2 is the linear transformation with matrix

[
cosθ −sinθ
sinθ cosθ

]
.

For example, Rπ
2

and Rπ have matrices

[
0 −1
1 0

]
and

[
−1 0

0 −1

]
, respectively, by Theorem 2.6.4.

The first of these confirms the result in Example 2.2.15. The second shows that rotating a vector x =

[
x

y

]

through the angle π results in Rπ(x) =

[
−1 0

0 −1

][
x

y

]
=

[
−x

−y

]
=−x. Thus applying Rπ is the same

as negating x, a fact that is evident without Theorem 2.6.4.

Example 2.6.7

φ
θ

Rθ

[
Rφ (x)

]

Rφ (x)

x

0
x

y

Figure 2.6.11

Let θ and φ be angles. By finding the matrix of the composite
Rθ ◦Rφ , obtain expressions for cos(θ +φ) and sin(θ +φ).

Solution. Consider the transformations R2 Rφ−→ R2 Rθ−→ R2. Their
composite Rθ ◦Rφ is the transformation that first rotates the
plane through φ and then rotates it through θ , and so is the rotation
through the angle θ +φ (see Figure 2.6.11).
In other words

Rθ+φ = Rθ ◦Rφ

Theorem 2.6.3 shows that the corresponding equation holds
for the matrices of these transformations, so Theorem 2.6.4 gives:

[
cos(θ +φ) −sin(θ +φ)
sin(θ +φ) cos(θ +φ)

]
=

[
cosθ −sinθ
sinθ cosθ

][
cosφ −sinφ
sinφ cosφ

]

If we perform the matrix multiplication on the right, and then compare first column entries, we
obtain

cos(θ +φ) = cosθ cosφ − sinθ sinφ

sin(θ +φ) = sinθ cosφ − cosθ sinφ

These are the two basic identities from which most of trigonometry can be derived.
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Reflections

Qm(x)

x

0

y = mx

x

y

Figure 2.6.12

The line through the origin with slope m has equation y = mx, and we let
Qm : R2→R2 denote reflection in the line y = mx.

This transformation is described geometrically in Figure 2.6.12. In
words, Qm(x) is the “mirror image” of x in the line y = mx. If m = 0 then
Q0 is reflection in the x axis, so we already know Q0 is linear. While we
could show directly that Qm is linear (with an argument like that for Rθ ),
we prefer to do it another way that is instructive and derives the matrix of
Qm directly without using Theorem 2.6.2.

Let θ denote the angle between the positive x axis and the line y = mx.
The key observation is that the transformation Qm can be accomplished in

three steps: First rotate through −θ (so our line coincides with the x axis), then reflect in the x axis, and
finally rotate back through θ . In other words:

Qm = Rθ ◦Q0 ◦R−θ

Since R−θ , Q0, and Rθ are all linear, this (with Theorem 2.6.3) shows that Qm is linear and that its matrix
is the product of the matrices of Rθ , Q0, and R−θ . If we write c = cosθ and s = sinθ for simplicity, then
the matrices of Rθ , R−θ , and Q0 are

[
c −s

s c

]
,

[
c s

−s c

]
, and

[
1 0
0 −1

]
respectively.13

Hence, by Theorem 2.6.3, the matrix of Qm = Rθ ◦Q0 ◦R−θ is

[
c −s

s c

][
1 0
0 −1

][
c s

−s c

]
=

[
c2− s2 2sc

2sc s2− c2

]

θ
m

1

[
1
m

]

0

√
1+m2 y = mx

x

y

Figure 2.6.13

We can obtain this matrix in terms of m alone. Figure 2.6.13 shows
that

cosθ = 1√
1+m2 and sinθ = m√

1+m2

so the matrix

[
c2− s2 2sc

2sc s2− c2

]
of Qm becomes 1

1+m2

[
1−m2 2m

2m m2−1

]
.

Theorem 2.6.5

Let Qm denote reflection in the line y = mx. Then Qm is a linear

transformation with matrix 1
1+m2

[
1−m2 2m

2m m2−1

]
.

13The matrix of R−θ comes from the matrix of Rθ using the fact that, for all angles θ , cos(−θ ) = cosθ and
sin(−θ ) =−sin(θ ).
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Note that if m = 0, the matrix in Theorem 2.6.5 becomes

[
1 0
0 −1

]
, as expected. Of course this

analysis fails for reflection in the y axis because vertical lines have no slope. However it is an easy

exercise to verify directly that reflection in the y axis is indeed linear with matrix

[
−1 0

0 1

]
.14

Example 2.6.8

Let T : R2→ R2 be rotation through −π
2 followed by reflection in the y axis. Show that T is a

reflection in a line through the origin and find the line.

Solution. The matrix of R−π
2

is


 cos(−π

2 ) −sin(−π
2 )

sin(−π
2 ) cos(−π

2 )


=

[
0 1
−1 0

]
and the matrix of

reflection in the y axis is

[
−1 0

0 1

]
. Hence the matrix of T is

[
−1 0

0 1

][
0 1
−1 0

]
=

[
0 −1
−1 0

]
and this is reflection in the line y =−x (take m =−1 in

Theorem 2.6.5).

Projections

Pm(x)

x

y = mx

0
x

y

Figure 2.6.14

The method in the proof of Theorem 2.6.5 works more generally. Let
Pm : R2→R2 denote projection on the line y = mx. This transformation is
described geometrically in Figure 2.6.14.

If m = 0, then P0

[
x

y

]
=

[
x

0

]
for all

[
x

y

]
in R2, so P0 is linear with

matrix

[
1 0
0 0

]
. Hence the argument above for Qm goes through for Pm.

First observe that
Pm = Rθ ◦P0 ◦R−θ

as before. So, Pm is linear with matrix
[

c −s

s c

][
1 0
0 0

][
c s

−s c

]
=

[
c2 sc

sc s2

]

where c = cosθ = 1√
1+m2 and s = sinθ = m√

1+m2 .

14Note that

[
−1 0

0 1

]
= lim

m→∞

1
1+m2

[
1−m2 2m

2m m2− 1

]
.
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This gives:

Theorem 2.6.6

Let Pm : R2→ R2 be projection on the line y = mx. Then Pm is a linear transformation with matrix
1

1+m2

[
1 m

m m2

]
.

Again, if m = 0, then the matrix in Theorem 2.6.6 reduces to

[
1 0
0 0

]
as expected. As the y axis has

no slope, the analysis fails for projection on the y axis, but this transformation is indeed linear with matrix[
0 0
0 1

]
as is easily verified directly.

Note that the formula for the matrix of Qm in Theorem 2.6.5 can be derived from the above formula
for the matrix of Pm. Using Figure 2.6.12, observe that Qm(x) = x+2[Pm(x)−x] so Qm(x) = 2Pm(x)−x.
Substituting the matrices for Pm(x) and 1R2(x) gives the desired formula.

Example 2.6.9

Given x in R2, write y = Pm(x). The fact that y lies on the line y = mx means that Pm(y) = y. But
then

(Pm ◦Pm)(x) = Pm(y) = y = Pm(x) for all x in R2, that is, Pm ◦Pm = Pm.

In particular, if we write the matrix of Pm as A = 1
1+m2

[
1 m

m m2

]
, then A2 = A. The reader should

verify this directly.

Exercises for 2.6

Exercise 2.6.1 Let T : R3→ R2 be a linear transforma-
tion.

a. Find T




8
3
7


 if T




1
0
−1


=

[
2
3

]

and T




2
1
3


=

[
−1

0

]
.

b. Find T




5
6

−13


 if T




3
2
−1


=

[
3
5

]

and T




2
0
5


=

[
−1

2

]
.

Exercise 2.6.2 Let T : R4→ R3 be a linear transforma-
tion.

a. Find T




1
3
−2
−3


 if T




1
1
0
−1


=




2
3
−1




and T




0
−1

1
1


=




5
0
1


.

b. Find T




5
−1

2
−4


 if T




1
1
1
1


=




5
1
−3



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and T




−1
1
0
2


=




2
0
1


.

Exercise 2.6.3 In each case assume that the transfor-
mation T is linear, and use Theorem 2.6.2 to obtain the
matrix A of T .

a. T : R2→ R2 is reflection in the line y =−x.

b. T : R2→ R2 is given by T (x) =−x for each x in R2.

c. T : R2→ R2 is clockwise rotation through π
4 .

d. T : R2→ R2 is counterclockwise rotation through π
4 .

Exercise 2.6.4 In each case use Theorem 2.6.2 to obtain
the matrix A of the transformation T . You may assume
that T is linear in each case.

a. T : R3→ R3 is reflection in the x− z plane.

b. T : R3→ R3 is reflection in the y− z plane.

Exercise 2.6.5 Let T : Rn→Rm be a linear transforma-
tion.

a. If x is in Rn, we say that x is in the kernel of T if
T (x) = 0. If x1 and x2 are both in the kernel of T ,
show that ax1 + bx2 is also in the kernel of T for
all scalars a and b.

b. If y is in Rn, we say that y is in the image of T if
y = T (x) for some x in Rn. If y1 and y2 are both
in the image of T , show that ay1 + by2 is also in
the image of T for all scalars a and b.

Exercise 2.6.6 Use Theorem 2.6.2 to find the matrix of
the identity transformation 1Rn : Rn → Rn defined by
1Rn(x) = x for each x in Rn.

Exercise 2.6.7 In each case show that T : R2 → R2 is
not a linear transformation.

T

[
x

y

]
=

[
xy

0

]
a. T

[
x

y

]
=

[
0
y2

]
b.

Exercise 2.6.8 In each case show that T is either reflec-
tion in a line or rotation through an angle, and find the
line or angle.

a. T

[
x

y

]
= 1

5

[
−3x+4y

4x+3y

]

b. T

[
x

y

]
= 1√

2

[
x+ y

−x+ y

]

c. T

[
x

y

]
= 1√

3

[
x−
√

3y√
3x+ y

]

d. T

[
x

y

]
=− 1

10

[
8x+6y

6x−8y

]

Exercise 2.6.9 Express reflection in the line y = −x as
the composition of a rotation followed by reflection in
the line y = x.

Exercise 2.6.10 Find the matrix of T : R3→R3 in each
case:

a. T is rotation through θ about the x axis (from the
y axis to the z axis).

b. T is rotation through θ about the y axis (from the
x axis to the z axis).

Exercise 2.6.11 Let Tθ : R2→ R2 denote reflection in
the line making an angle θ with the positive x axis.

a. Show that the matrix of Tθ is

[
cos2θ sin2θ

sin2θ −cos2θ

]

for all θ .

b. Show that Tθ ◦R2φ = Tθ−φ for all θ and φ .

Exercise 2.6.12 In each case find a rotation or reflection
that equals the given transformation.

a. Reflection in the y axis followed by rotation
through π

2 .

b. Rotation through π followed by reflection in the x

axis.

c. Rotation through π
2 followed by reflection in the

line y = x.

d. Reflection in the x axis followed by rotation
through π

2 .

e. Reflection in the line y = x followed by reflection
in the x axis.

f. Reflection in the x axis followed by reflection in
the line y = x.
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Exercise 2.6.13 Let R and S be matrix transformations
Rn→ Rm induced by matrices A and B respectively. In
each case, show that T is a matrix transformation and
describe its matrix in terms of A and B.

a. T (x) = R(x)+S(x) for all x in Rn.

b. T (x) = aR(x) for all x in Rn (where a is a fixed
real number).

Exercise 2.6.14 Show that the following hold for all lin-
ear transformations T : Rn→ Rm:

T (0) = 0a. T (−x) = −T(x) for all x in
Rn

b.

Exercise 2.6.15 The transformation T : Rn → Rm de-
fined by T (x) = 0 for all x in Rn is called the zero trans-

formation.

a. Show that the zero transformation is linear and
find its matrix.

b. Let e1, e2, . . . , en denote the columns of the n×n

identity matrix. If T : Rn → Rm is linear and
T (ei) = 0 for each i, show that T is the zero trans-
formation. [Hint: Theorem 2.6.1.]

Exercise 2.6.16 Write the elements of Rn and Rm as
rows. If A is an m× n matrix, define T : Rm → Rn by
T (y) = yA for all rows y in Rm. Show that:

a. T is a linear transformation.

b. the rows of A are T (f1), T (f2), . . . , T (fm) where
fi denotes row i of Im. [Hint: Show that fiA is row
i of A.]

Exercise 2.6.17 Let S :Rn→Rn and T :Rn→Rn be lin-
ear transformations with matrices A and B respectively.

a. Show that B2 = B if and only if T 2 = T (where T 2

means T ◦T ).

b. Show that B2 = I if and only if T 2 = 1Rn .

c. Show that AB = BA if and only if S◦T = T ◦S.

[Hint: Theorem 2.6.3.]

Exercise 2.6.18 Let Q0 : R2→ R2 be reflection in the x

axis, let Q1 : R2→ R2 be reflection in the line y = x, let
Q−1 : R2→ R2 be reflection in the line y = −x, and let
R π

2
: R2→ R2 be counterclockwise rotation through π

2 .

a. Show that Q1 ◦R π
2
= Q0.

b. Show that Q1 ◦Q0 = R π
2

.

c. Show that R π
2
◦Q0 = Q1.

d. Show that Q0 ◦R π
2
= Q−1.

Exercise 2.6.19 For any slope m, show that:

Qm ◦Pm = Pma. Pm ◦Qm = Pmb.

Exercise 2.6.20 Define T : Rn → R by
T (x1, x2, . . . , xn) = x1 + x2 + · · ·+ xn. Show that T

is a linear transformation and find its matrix.

Exercise 2.6.21 Given c in R, define Tc : Rn → R by
Tc(x) = cx for all x in Rn. Show that Tc is a linear trans-
formation and find its matrix.

Exercise 2.6.22 Given vectors w and x in Rn, denote
their dot product by w ·x.

a. Given w in Rn, define Tw : Rn → R by Tw(x) =
w ·x for all x in Rn. Show that Tw is a linear trans-
formation.

b. Show that every linear transformation T : Rn→R
is given as in (a); that is T = Tw for some w in Rn.

Exercise 2.6.23 If x 6= 0 and y are vectors in Rn, show
that there is a linear transformation T :Rn→Rn such that
T (x) = y. [Hint: By Definition 2.5, find a matrix A such
that Ax = y.]

Exercise 2.6.24 Let Rn T−→Rm S−→Rk be two linear trans-
formations. Show directly that S◦T is linear. That is:

a. Show that (S◦T )(x+y) = (S◦T )x+(S◦T )y for
all x, y in Rn.

b. Show that (S◦T )(ax) = a[(S◦T )x] for all x in Rn

and all a in R.

Exercise 2.6.25 Let Rn T−→ Rm S−→ Rk R−→ Rk be linear.
Show that R ◦ (S ◦ T ) = (R ◦ S) ◦ T by showing directly
that [R◦(S◦T )](x) = [(R◦S)◦T )](x) holds for each vec-
tor x in Rn.
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2.7 LU-Factorization15

The solution to a system Ax = b of linear equations can be solved quickly if A can be factored as A = LU

where L and U are of a particularly nice form. In this section we show that gaussian elimination can be
used to find such factorizations.

Triangular Matrices

As for square matrices, if A =
[
ai j

]
is an m× n matrix, the elements a11, a22, a33, . . . form the main

diagonal of A. Then A is called upper triangular if every entry below and to the left of the main diagonal
is zero. Every row-echelon matrix is upper triangular, as are the matrices




1 −1 0 3
0 2 1 1
0 0 −3 0







0 2 1 0 5
0 0 0 3 1
0 0 1 0 1







1 1 1
0 −1 1
0 0 0
0 0 0




By analogy, a matrix A is called lower triangular if its transpose is upper triangular, that is if each entry
above and to the right of the main diagonal is zero. A matrix is called triangular if it is upper or lower
triangular.

Example 2.7.1

Solve the system
x1 + 2x2− 3x3− x4 + 5x5 = 3

5x3 + x4 + x5 = 8
2x5 = 6

where the coefficient matrix is upper triangular.

Solution. As in gaussian elimination, let the “non-leading” variables be parameters: x2 = s and
x4 = t. Then solve for x5, x3, and x1 in that order as follows. The last equation gives

x5 =
6
2 = 3

Substitution into the second last equation gives

x3 = 1− 1
5t

Finally, substitution of both x5 and x3 into the first equation gives

x1 =−9−2s+ 2
5t

The method used in Example 2.7.1 is called back substitution because later variables are substituted
into earlier equations. It works because the coefficient matrix is upper triangular. Similarly, if the coeffi-

15This section is not used later and so may be omitted with no loss of continuity.
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cient matrix is lower triangular the system can be solved by forward substitution where earlier variables
are substituted into later equations. As observed in Section 1.2, these procedures are more numerically
efficient than gaussian elimination.

Now consider a system Ax = b where A can be factored as A = LU where L is lower triangular and U

is upper triangular. Then the system Ax = b can be solved in two stages as follows:

1. First solve Ly = b for y by forward substitution.

2. Then solve Ux = y for x by back substitution.

Then x is a solution to Ax = b because Ax = LUx = Ly = b. Moreover, every solution x arises this way
(take y =Ux). Furthermore the method adapts easily for use in a computer.

This focuses attention on efficiently obtaining such factorizations A = LU . The following result will
be needed; the proof is straightforward and is left as Exercises 2.7.7 and 2.7.8.

Lemma 2.7.1

Let A and B denote matrices.

1. If A and B are both lower (upper) triangular, the same is true of AB.

2. If A is n×n and lower (upper) triangular, then A is invertible if and only if every main
diagonal entry is nonzero. In this case A−1 is also lower (upper) triangular.

LU-Factorization

Let A be an m×n matrix. Then A can be carried to a row-echelon matrix U (that is, upper triangular). As
in Section 2.5, the reduction is

A→ E1A→ E2E1A→ E3E2E1A→ ·· · → EkEk−1 · · ·E2E1A =U

where E1, E2, . . . , Ek are elementary matrices corresponding to the row operations used. Hence

A = LU

where L = (EkEk−1 · · ·E2E1)
−1 = E−1

1 E−1
2 · · ·E−1

k−1E−1
k . If we do not insist that U is reduced then, except

for row interchanges, none of these row operations involve adding a row to a row above it. Thus, if no
row interchanges are used, all the Ei are lower triangular, and so L is lower triangular (and invertible) by
Lemma 2.7.1. This proves the following theorem. For convenience, let us say that A can be lower reduced

if it can be carried to row-echelon form using no row interchanges.
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Theorem 2.7.1

If A can be lower reduced to a row-echelon matrix U , then

A = LU

where L is lower triangular and invertible and U is upper triangular and row-echelon.

Definition 2.14 LU-factorization

A factorization A = LU as in Theorem 2.7.1 is called an LU-factorization of A.

Such a factorization may not exist (Exercise 2.7.4) because A cannot be carried to row-echelon form
using no row interchange. A procedure for dealing with this situation will be outlined later. However, if
an LU-factorization A = LU does exist, then the gaussian algorithm gives U and also leads to a procedure
for finding L. Example 2.7.2 provides an illustration. For convenience, the first nonzero column from the
left in a matrix A is called the leading column of A.

Example 2.7.2

Find an LU-factorization of A =




0 2 −6 −2 4
0 −1 3 3 2
0 −1 3 7 10


.

Solution. We lower reduce A to row-echelon form as follows:

A =




0 2 −6 −2 4
0 −1 3 3 2
0 −1 3 7 10


→




0 1 −3 −1 2
0 0 0 2 4
0 0 0 6 12


→




0 1 −3 −1 2
0 0 0 1 2
0 0 0 0 0


=U

The circled columns are determined as follows: The first is the leading column of A, and is used
(by lower reduction) to create the first leading 1 and create zeros below it. This completes the work
on row 1, and we repeat the procedure on the matrix consisting of the remaining rows. Thus the
second circled column is the leading column of this smaller matrix, which we use to create the
second leading 1 and the zeros below it. As the remaining row is zero here, we are finished. Then
A = LU where

L =




2 0 0
−1 2 0
−1 6 1




This matrix L is obtained from I3 by replacing the bottom of the first two columns by the circled
columns in the reduction. Note that the rank of A is 2 here, and this is the number of circled
columns.

The calculation in Example 2.7.2 works in general. There is no need to calculate the elementary
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matrices Ei, and the method is suitable for use in a computer because the circled columns can be stored in
memory as they are created. The procedure can be formally stated as follows:

LU-Algorithm

Let A be an m×n matrix of rank r, and suppose that A can be lower reduced to a row-echelon
matrix U . Then A = LU where the lower triangular, invertible matrix L is constructed as follows:

1. If A = 0, take L = Im and U = 0.

2. If A 6= 0, write A1 = A and let c1 be the leading column of A1. Use c1 to create the first
leading 1 and create zeros below it (using lower reduction). When this is completed, let A2

denote the matrix consisting of rows 2 to m of the matrix just created.

3. If A2 6= 0, let c2 be the leading column of A2 and repeat Step 2 on A2 to create A3.

4. Continue in this way until U is reached, where all rows below the last leading 1 consist of
zeros. This will happen after r steps.

5. Create L by placing c1, c2, . . . , cr at the bottom of the first r columns of Im.

A proof of the LU-algorithm is given at the end of this section.

LU-factorization is particularly important if, as often happens in business and industry, a series of
equations Ax = B1, Ax = B2, . . . , Ax = Bk, must be solved, each with the same coefficient matrix A. It is
very efficient to solve the first system by gaussian elimination, simultaneously creating an LU-factorization
of A, and then using the factorization to solve the remaining systems by forward and back substitution.

Example 2.7.3

Find an LU-factorization for A =




5 −5 10 0 5
−3 3 2 2 1
−2 2 0 −1 0

1 −1 10 2 5


.

Solution. The reduction to row-echelon form is
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


5 −5 10 0 5
−3 3 2 2 1
−2 2 0 −1 0

1 −1 10 2 5


→




1 −1 2 0 1
0 0 8 2 4
0 0 4 −1 2
0 0 8 2 4




→




1 −1 2 0 1

0 0 1 1
4

1
2

0 0 0 −2 0

0 0 0 0 0




→




1 −1 2 0 1

0 0 1 1
4

1
2

0 0 0 1 0

0 0 0 0 0



=U

If U denotes this row-echelon matrix, then A = LU , where

L =




5 0 0 0
−3 8 0 0
−2 4 −2 0

1 8 0 1




The next example deals with a case where no row of zeros is present in U (in fact, A is invertible).

Example 2.7.4

Find an LU-factorization for A =




2 4 2
1 1 2
−1 0 2


.

Solution. The reduction to row-echelon form is




2 4 2
1 1 2
−1 0 2


→




1 2 1
0 −1 1
0 2 3


→




1 2 1
0 1 −1
0 0 5


→




1 2 1
0 1 −1
0 0 1


=U

Hence A = LU where L =




2 0 0
1 −1 0
−1 2 5


.
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There are matrices (for example

[
0 1
1 0

]
) that have no LU-factorization and so require at least one

row interchange when being carried to row-echelon form via the gaussian algorithm. However, it turns
out that, if all the row interchanges encountered in the algorithm are carried out first, the resulting matrix
requires no interchanges and so has an LU-factorization. Here is the precise result.

Theorem 2.7.2

Suppose an m×n matrix A is carried to a row-echelon matrix U via the gaussian algorithm. Let
P1, P2, . . . , Ps be the elementary matrices corresponding (in order) to the row interchanges used,
and write P = Ps · · ·P2P1. (If no interchanges are used take P = Im.) Then:

1. PA is the matrix obtained from A by doing these interchanges (in order) to A.

2. PA has an LU-factorization.

The proof is given at the end of this section.

A matrix P that is the product of elementary matrices corresponding to row interchanges is called
a permutation matrix. Such a matrix is obtained from the identity matrix by arranging the rows in a
different order, so it has exactly one 1 in each row and each column, and has zeros elsewhere. We regard
the identity matrix as a permutation matrix. The elementary permutation matrices are those obtained from
I by a single row interchange, and every permutation matrix is a product of elementary ones.

Example 2.7.5

If A =




0 0 −1 2
−1 −1 1 2

2 1 −3 6
0 1 −1 4


, find a permutation matrix P such that PA has an LU-factorization,

and then find the factorization.

Solution. Apply the gaussian algorithm to A:

A
∗−→




−1 −1 1 2
0 0 −1 2
2 1 −3 6
0 1 −1 4


→




1 1 −1 −2
0 0 −1 2
0 −1 −1 10
0 1 −1 4



∗−→




1 1 −1 −2
0 −1 −1 10
0 0 −1 2
0 1 −1 4




→




1 1 −1 −2
0 1 1 −10
0 0 −1 2
0 0 −2 14


→




1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 10




Two row interchanges were needed (marked with ∗), first rows 1 and 2 and then rows 2 and 3.
Hence, as in Theorem 2.7.2,

P =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1







0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


=




0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1



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If we do these interchanges (in order) to A, the result is PA. Now apply the LU-algorithm to PA:

PA =




−1 −1 1 2
2 1 −3 6
0 0 −1 2
0 1 −1 4


→




1 1 −1 −2
0 −1 −1 10
0 0 −1 2
0 1 −1 4


→




1 1 −1 −2
0 1 1 −10
0 0 −1 2
0 0 −2 14




→




1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 10


→




1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 1


=U

Hence, PA = LU , where L =




−1 0 0 0
2 −1 0 0
0 0 −1 0
0 1 −2 10


 and U =




1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 1


.

Theorem 2.7.2 provides an important general factorization theorem for matrices. If A is any m× n

matrix, it asserts that there exists a permutation matrix P and an LU-factorization PA = LU . Moreover,
it shows that either P = I or P = Ps · · ·P2P1, where P1, P2, . . . , Ps are the elementary permutation matri-
ces arising in the reduction of A to row-echelon form. Now observe that P−1

i = Pi for each i (they are
elementary row interchanges). Thus, P−1 = P1P2 · · ·Ps, so the matrix A can be factored as

A = P−1LU

where P−1 is a permutation matrix, L is lower triangular and invertible, and U is a row-echelon matrix.
This is called a PLU-factorization of A.

The LU-factorization in Theorem 2.7.1 is not unique. For example,
[

1 0
3 2

][
1 −2 3
0 0 0

]
=

[
1 0
3 1

][
1 −2 3
0 0 0

]

However, it is necessary here that the row-echelon matrix has a row of zeros. Recall that the rank of a
matrix A is the number of nonzero rows in any row-echelon matrix U to which A can be carried by row
operations. Thus, if A is m×n, the matrix U has no row of zeros if and only if A has rank m.

Theorem 2.7.3

Let A be an m×n matrix that has an LU-factorization

A = LU

If A has rank m (that is, U has no row of zeros), then L and U are uniquely determined by A.

Proof. Suppose A = MV is another LU-factorization of A, so M is lower triangular and invertible and V is
row-echelon. Hence LU = MV , and we must show that L = M and U =V . We write N = M−1L. Then N
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is lower triangular and invertible (Lemma 2.7.1) and NU = V , so it suffices to prove that N = I. If N is
m×m, we use induction on m. The case m = 1 is left to the reader. If m > 1, observe first that column 1
of V is N times column 1 of U . Thus if either column is zero, so is the other (N is invertible). Hence, we
can assume (by deleting zero columns) that the (1, 1)-entry is 1 in both U and V .

Now we write N =

[
a 0
X N1

]
, U =

[
1 Y

0 U1

]
, and V =

[
1 Z

0 V1

]
in block form. Then NU = V

becomes

[
a aY

X XY +N1U1

]
=

[
1 Z

0 V1

]
. Hence a = 1, Y = Z, X = 0, and N1U1 = V1. But N1U1 = V1

implies N1 = I by induction, whence N = I.

If A is an m×m invertible matrix, then A has rank m by Theorem 2.4.5. Hence, we get the following
important special case of Theorem 2.7.3.

Corollary 2.7.1

If an invertible matrix A has an LU-factorization A = LU , then L and U are uniquely determined by
A.

Of course, in this case U is an upper triangular matrix with 1s along the main diagonal.

Proofs of Theorems

Proof of the LU-Algorithm. If c1, c2, . . . , cr are columns of lengths m, m−1, . . . , m−r+1, respectively,

write L(m)(c1, c2, . . . , cr) for the lower triangular m×m matrix obtained from Im by placing c1, c2, . . . , cr

at the bottom of the first r columns of Im.

Proceed by induction on n. If A = 0 or n = 1, it is left to the reader. If n > 1, let c1 denote the leading
column of A and let k1 denote the first column of the m×m identity matrix. There exist elementary
matrices E1, . . . , Ek such that, in block form,

(Ek · · ·E2E1)A =

[
0 k1

X1

A1

]
where (Ek · · ·E2E1)c1 = k1

Moreover, each E j can be taken to be lower triangular (by assumption). Write

G = (Ek · · ·E2E1)
−1 = E−1

1 E−1
2 · · ·E−1

k

Then G is lower triangular, and Gk1 = c1. Also, each E j (and so each E−1
j ) is the result of either multiply-

ing row 1 of Im by a constant or adding a multiple of row 1 to another row. Hence,

G = (E−1
1 E−1

2 · · ·E−1
k )Im =

[
c1

0
Im−1

]

in block form. Now, by induction, let A1 =L1U1 be an LU-factorization of A1, where L1 =L(m−1) [c2, . . . , cr]
and U1 is row-echelon. Then block multiplication gives

G−1A =

[
0 k1

X1

L1U1

]
=

[
1 0
0 L1

][
0 1 X1

0 0 U1

]
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Hence A = LU , where U =

[
0 1 X1

0 0 U1

]
is row-echelon and

L =

[
c1

0
Im−1

][
1 0
0 L1

]
=

[
c1

0
L

]
= L(m) [c1, c2, . . . , cr]

This completes the proof.

Proof of Theorem 2.7.2. Let A be a nonzero m× n matrix and let k j denote column j of Im. There is a
permutation matrix P1 (where either P1 is elementary or P1 = Im) such that the first nonzero column c1 of
P1A has a nonzero entry on top. Hence, as in the LU-algorithm,

L(m) [c1]
−1 ·P1 ·A =

[
0 1 X1

0 0 A1

]

in block form. Then let P2 be a permutation matrix (either elementary or Im) such that

P2 ·L(m) [c1]
−1 ·P1 ·A =

[
0 1 X1

0 0 A′1

]

and the first nonzero column c2 of A′1 has a nonzero entry on top. Thus,

L(m) [k1, c2]
−1 ·P2 ·L(m) [c1]

−1 ·P1 ·A =




0 1 X1

0 0
0 1 X2

0 0 A2




in block form. Continue to obtain elementary permutation matrices P1, P2, . . . , Pr and columns c1, c2, . . . , cr

of lengths m, m−1, . . . , such that

(LrPrLr−1Pr−1 · · ·L2P2L1P1)A =U

where U is a row-echelon matrix and L j = L(m)
[
k1, . . . , k j−1, c j

]−1
for each j, where the notation

means the first j− 1 columns are those of Im. It is not hard to verify that each L j has the form L j =

L(m)
[
k1, . . . , k j−1, c′j

]
where c′j is a column of length m− j+ 1. We now claim that each permutation

matrix Pk can be “moved past” each matrix L j to the right of it, in the sense that

PkL j = L′jPk

where L′j = L(m)
[
k1, . . . , k j−1, c′′j

]
for some column c′′j of length m− j+ 1. Given that this is true, we

obtain a factorization of the form

(LrL
′
r−1 · · ·L′2L′1)(PrPr−1 · · ·P2P1)A =U

If we write P= PrPr−1 · · ·P2P1, this shows that PA has an LU-factorization because LrL
′
r−1 · · ·L′2L′1 is lower

triangular and invertible. All that remains is to prove the following rather technical result.
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Lemma 2.7.2

Let Pk result from interchanging row k of Im with a row below it. If j < k, let c j be a column of
length m− j+1. Then there is another column c′j of length m− j+1 such that

Pk ·L(m)
[
k1, . . . , k j−1, c j

]
= L(m)

[
k1, . . . , k j−1, c′j

]
·Pk

The proof is left as Exercise 2.7.11.

Exercises for 2.7

Exercise 2.7.1 Find an LU-factorization of the follow-
ing matrices.

a.




2 6 −2 0 2
3 9 −3 3 1
−1 −3 1 −3 1




b.




2 4 2
1 −1 3
−1 7 −7




c.




2 6 −2 0 2
1 5 −1 2 5
3 7 −3 −2 5
−1 −1 1 2 3




d.




−1 −3 1 0 −1
1 4 1 1 1
1 2 −3 −1 1
0 −2 −4 −2 0




e.




2 2 4 6 0 2
1 −1 2 1 3 1
−2 2 −4 −1 1 6

0 2 0 3 4 8
−2 4 −4 1 −2 6




f.




2 2 −2 4 2
1 −1 0 2 1
3 1 −2 6 3
1 3 −2 2 1




Exercise 2.7.2 Find a permutation matrix P and an LU-
factorization of PA if A is:




0 0 2
0 −1 4
3 5 1


a.




0 −1 2
0 0 4
−1 2 1


b.




0 −1 2 1 3
−1 1 3 1 4

1 −1 −3 6 2
2 −2 −4 1 0


c.




−1 −2 3 0
2 4 −6 5
1 1 −1 3
2 5 −10 1


d.

Exercise 2.7.3 In each case use the given LU-
decomposition of A to solve the system Ax= b by finding
y such that Ly = b, and then x such that Ux = y:

a. A =




2 0 0
0 −1 0
1 1 3






1 0 0 1
0 0 1 2
0 0 0 1


;

b =




1
−1

2




b. A =




2 0 0
1 3 0
−1 2 1






1 1 0 −1
0 1 0 1
0 0 0 0


;

b =



−2
−1

1



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c. A =




−2 0 0 0
1 −1 0 0
−1 0 2 0

0 1 0 2







1 −1 2 1

0 1 1 −4

0 0 1 − 1
2

0 0 0 1




;

b =




1
−1

2
0




d. A =




2 0 0 0
1 −1 0 0
−1 1 2 0

3 0 1 −1







1 −1 0 1
0 1 −2 −1
0 0 1 1
0 0 0 0


;

b =




4
−6

4
5




Exercise 2.7.4 Show that

[
0 1
1 0

]
= LU is impossible

where L is lower triangular and U is upper triangular.

Exercise 2.7.5 Show that we can accomplish any row
interchange by using only row operations of other types.

Exercise 2.7.6

a. Let L and L1 be invertible lower triangular matri-
ces, and let U and U1 be invertible upper triangu-
lar matrices. Show that LU = L1U1 if and only if
there exists an invertible diagonal matrix D such
that L1 = LD and U1 = D−1U . [Hint: Scrutinize
L−1L1 =UU−1

1 .]

b. Use part (a) to prove Theorem 2.7.3 in the case
that A is invertible.

Exercise 2.7.7 Prove Lemma 2.7.1(1). [Hint: Use block
multiplication and induction.]

Exercise 2.7.8 Prove Lemma 2.7.1(2). [Hint: Use block
multiplication and induction.]

Exercise 2.7.9 A triangular matrix is called unit trian-

gular if it is square and every main diagonal element is a
1.

a. If A can be carried by the gaussian algorithm
to row-echelon form using no row interchanges,
show that A = LU where L is unit lower triangular
and U is upper triangular.

b. Show that the factorization in (a.) is unique.

Exercise 2.7.10 Let c1, c2, . . . , cr be columns
of lengths m, m − 1, . . . , m − r + 1. If k j de-
notes column j of Im, show that L(m) [c1, c2, . . . , cr] =
L(m) [c1]L

(m) [k1, c2]L
(m) [k1, k2, c3] · · ·

L(m) [k1, k2, . . . , kr−1, cr]. The notation is as in the
proof of Theorem 2.7.2. [Hint: Use induction on m and
block multiplication.]

Exercise 2.7.11 Prove Lemma 2.7.2. [Hint: P−1
k = Pk.

Write Pk =

[
Ik 0
0 P0

]
in block form where P0 is an

(m− k)× (m− k) permutation matrix.]

2.8 An Application to Input-Output Economic Models16

In 1973 Wassily Leontief was awarded the Nobel prize in economics for his work on mathematical mod-
els.17 Roughly speaking, an economic system in this model consists of several industries, each of which
produces a product and each of which uses some of the production of the other industries. The following
example is typical.

16The applications in this section and the next are independent and may be taken in any order.
17See W. W. Leontief, “The world economy of the year 2000,” Scientific American, Sept. 1980.
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Example 2.8.1

A primitive society has three basic needs: food, shelter, and clothing. There are thus three
industries in the society—the farming, housing, and garment industries—that produce these
commodities. Each of these industries consumes a certain proportion of the total output of each
commodity according to the following table.

OUTPUT

Farming Housing Garment

Farming 0.4 0.2 0.3
CONSUMPTION Housing 0.2 0.6 0.4

Garment 0.4 0.2 0.3

Find the annual prices that each industry must charge for its income to equal its expenditures.

Solution. Let p1, p2, and p3 be the prices charged per year by the farming, housing, and garment
industries, respectively, for their total output. To see how these prices are determined, consider the
farming industry. It receives p1 for its production in any year. But it consumes products from all
these industries in the following amounts (from row 1 of the table): 40% of the food, 20% of the
housing, and 30% of the clothing. Hence, the expenditures of the farming industry are
0.4p1 +0.2p2 +0.3p3, so

0.4p1 +0.2p2 +0.3p3 = p1

A similar analysis of the other two industries leads to the following system of equations.

0.4p1 +0.2p2 +0.3p3 = p1

0.2p1 +0.6p2 +0.4p3 = p2

0.4p1 +0.2p2 +0.3p3 = p3

This has the matrix form Ep = p, where

E =




0.4 0.2 0.3
0.2 0.6 0.4
0.4 0.2 0.3


 and p =




p1

p2

p3




The equations can be written as the homogeneous system

(I−E)p = 0

where I is the 3×3 identity matrix, and the solutions are

p =




2t

3t

2t




where t is a parameter. Thus, the pricing must be such that the total output of the farming industry
has the same value as the total output of the garment industry, whereas the total value of the
housing industry must be 3

2 as much.
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In general, suppose an economy has n industries, each of which uses some (possibly none) of the
production of every industry. We assume first that the economy is closed (that is, no product is exported
or imported) and that all product is used. Given two industries i and j, let ei j denote the proportion of the
total annual output of industry j that is consumed by industry i. Then E =

[
ei j

]
is called the input-output

matrix for the economy. Clearly,
0≤ ei j ≤ 1 for all i and j (2.12)

Moreover, all the output from industry j is used by some industry (the model is closed), so

e1 j + e2 j + · · ·+ ei j = 1 for each j (2.13)

This condition asserts that each column of E sums to 1. Matrices satisfying conditions (2.12) and (2.13)
are called stochastic matrices.

As in Example 2.8.1, let pi denote the price of the total annual production of industry i. Then pi is the
annual revenue of industry i. On the other hand, industry i spends ei1p1 + ei2 p2 + · · ·+ ein pn annually for
the product it uses (ei j p j is the cost for product from industry j). The closed economic system is said to
be in equilibrium if the annual expenditure equals the annual revenue for each industry—that is, if

e1 j p1 + e2 j p2 + · · ·+ ei j pn = pi for each i = 1, 2, . . . , n

If we write p =




p1

p2
...

pn


, these equations can be written as the matrix equation

Ep = p

This is called the equilibrium condition, and the solutions p are called equilibrium price structures.
The equilibrium condition can be written as

(I−E)p = 0

which is a system of homogeneous equations for p. Moreover, there is always a nontrivial solution p.
Indeed, the column sums of I−E are all 0 (because E is stochastic), so the row-echelon form of I−E has
a row of zeros. In fact, more is true:

Theorem 2.8.1

Let E be any n×n stochastic matrix. Then there is a nonzero n×1 vector p with nonnegative
entries such that Ep = p. If all the entries of E are positive, the matrix p can be chosen with all
entries positive.

Theorem 2.8.1 guarantees the existence of an equilibrium price structure for any closed input-output
system of the type discussed here. The proof is beyond the scope of this book.18

18The interested reader is referred to P. Lancaster’s Theory of Matrices (New York: Academic Press, 1969) or to E. Seneta’s
Non-negative Matrices (New York: Wiley, 1973).
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Example 2.8.2

Find the equilibrium price structures for four industries if the input-output matrix is

E =




0.6 0.2 0.1 0.1
0.3 0.4 0.2 0
0.1 0.3 0.5 0.2

0 0.1 0.2 0.7




Find the prices if the total value of business is $1000.

Solution. If p =




p1

p2

p3

p4


 is the equilibrium price structure, then the equilibrium condition reads

Ep = p. When we write this as (I−E)p = 0, the methods of Chapter 1 yield the following family
of solutions:

p =




44t

39t

51t

47t




where t is a parameter. If we insist that p1 + p2 + p3 + p4 = 1000, then t = 5.525. Hence

p =




243.09
215.47
281.76
259.67




to five figures.

The Open Model

We now assume that there is a demand for products in the open sector of the economy, which is the part of
the economy other than the producing industries (for example, consumers). Let di denote the total value of
the demand for product i in the open sector. If pi and ei j are as before, the value of the annual demand for
product i by the producing industries themselves is ei1 p1 + ei2 p2 + · · ·+ ein pn, so the total annual revenue
pi of industry i breaks down as follows:

pi = (ei1p1 + ei2 p2 + · · ·+ ein pn)+di for each i = 1, 2, . . . , n

The column d =




d1
...

dn


 is called the demand matrix, and this gives a matrix equation

p = Ep+d
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or
(I−E)p = d (2.14)

This is a system of linear equations for p, and we ask for a solution p with every entry nonnegative. Note
that every entry of E is between 0 and 1, but the column sums of E need not equal 1 as in the closed model.

Before proceeding, it is convenient to introduce a useful notation. If A =
[
ai j

]
and B =

[
bi j

]
are

matrices of the same size, we write A > B if ai j > bi j for all i and j, and we write A≥ B if ai j ≥ bi j for all
i and j. Thus P ≥ 0 means that every entry of P is nonnegative. Note that A ≥ 0 and B ≥ 0 implies that
AB≥ 0.

Now, given a demand matrix d≥ 0, we look for a production matrix p≥ 0 satisfying equation (2.14).
This certainly exists if I−E is invertible and (I−E)−1 ≥ 0. On the other hand, the fact that d≥ 0 means
any solution p to equation (2.14) satisfies p≥ Ep. Hence, the following theorem is not too surprising.

Theorem 2.8.2

Let E ≥ 0 be a square matrix. Then I−E is invertible and (I−E)−1 ≥ 0 if and only if there exists
a column p > 0 such that p > Ep.

Heuristic Proof.

If (I−E)−1 ≥ 0, the existence of p > 0 with p > Ep is left as Exercise 2.8.11. Conversely, suppose such
a column p exists. Observe that

(I−E)(I +E +E2 + · · ·+Ek−1) = I−Ek

holds for all k≥ 2. If we can show that every entry of Ek approaches 0 as k becomes large then, intuitively,
the infinite matrix sum

U = I +E +E2 + · · ·
exists and (I−E)U = I. Since U ≥ 0, this does it. To show that Ek approaches 0, it suffices to show that
EP < µP for some number µ with 0 < µ < 1 (then EkP < µkP for all k ≥ 1 by induction). The existence
of µ is left as Exercise 2.8.12.

The condition p > Ep in Theorem 2.8.2 has a simple economic interpretation. If p is a production
matrix, entry i of Ep is the total value of all product used by industry i in a year. Hence, the condition
p > Ep means that, for each i, the value of product produced by industry i exceeds the value of the product
it uses. In other words, each industry runs at a profit.

Example 2.8.3

If E =




0.6 0.2 0.3
0.1 0.4 0.2
0.2 0.5 0.1


, show that I−E is invertible and (I−E)−1 ≥ 0.

Solution. Use p = (3, 2, 2)T in Theorem 2.8.2.

If p0 = (1, 1, 1)T , the entries of Ep0 are the row sums of E. Hence p0 > Ep0 holds if the row sums of
E are all less than 1. This proves the first of the following useful facts (the second is Exercise 2.8.10).
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Corollary 2.8.1

Let E ≥ 0 be a square matrix. In each case, I−E is invertible and (I−E)−1 ≥ 0:

1. All row sums of E are less than 1.

2. All column sums of E are less than 1.

Exercises for 2.8

Exercise 2.8.1 Find the possible equilibrium price struc-
tures when the input-output matrices are:




0.1 0.2 0.3
0.6 0.2 0.3
0.3 0.6 0.4


a.




0.5 0 0.5
0.1 0.9 0.2
0.4 0.1 0.3


b.




0.3 0.1 0.1 0.2
0.2 0.3 0.1 0
0.3 0.3 0.2 0.3
0.2 0.3 0.6 0.7


c.




0.5 0 0.1 0.1
0.2 0.7 0 0.1
0.1 0.2 0.8 0.2
0.2 0.1 0.1 0.6


d.

Exercise 2.8.2 Three industries A, B, and C are such
that all the output of A is used by B, all the output of B is
used by C, and all the output of C is used by A. Find the
possible equilibrium price structures.

Exercise 2.8.3 Find the possible equilibrium price struc-
tures for three industries where the input-output matrix

is




1 0 0
0 0 1
0 1 0


. Discuss why there are two parameters

here.

Exercise 2.8.4 Prove Theorem 2.8.1 for a 2 × 2
stochastic matrix E by first writing it in the form E =[

a b

1−a 1−b

]
, where 0≤ a≤ 1 and 0≤ b≤ 1.

Exercise 2.8.5 If E is an n× n stochastic matrix and c

is an n× 1 matrix, show that the sum of the entries of c

equals the sum of the entries of the n×1 matrix Ec.

Exercise 2.8.6 Let W =
[

1 1 1 · · · 1
]
. Let E

and F denote n×n matrices with nonnegative entries.

a. Show that E is a stochastic matrix if and only if
WE =W .

b. Use part (a.) to deduce that, if E and F are both
stochastic matrices, then EF is also stochastic.

Exercise 2.8.7 Find a 2× 2 matrix E with entries be-
tween 0 and 1 such that:

a. I−E has no inverse.

b. I−E has an inverse but not all entries of (I−E)−1

are nonnegative.

Exercise 2.8.8 If E is a 2 × 2 matrix with entries
between 0 and 1, show that I − E is invertible and
(I−E)−1 ≥ 0 if and only if tr E < 1+ det E . Here, if

E =

[
a b

c d

]
, then tr E = a+d and det E = ad−bc.

Exercise 2.8.9 In each case show that I−E is invertible
and (I−E)−1 ≥ 0.




0.6 0.5 0.1
0.1 0.3 0.3
0.2 0.1 0.4


a.




0.7 0.1 0.3
0.2 0.5 0.2
0.1 0.1 0.4


b.




0.6 0.2 0.1
0.3 0.4 0.2
0.2 0.5 0.1


c.




0.8 0.1 0.1
0.3 0.1 0.2
0.3 0.3 0.2


d.

Exercise 2.8.10 Prove that (1) implies (2) in the Corol-
lary to Theorem 2.8.2.

Exercise 2.8.11 If (I−E)−1 ≥ 0, find p > 0 such that
p > Ep.

Exercise 2.8.12 If Ep < p where E ≥ 0 and p > 0, find
a number µ such that Ep < µp and 0 < µ < 1.

[Hint: If Ep = (q1, . . . , qn)
T and p = (p1, . . . , pn)

T ,

take any number µ where max
{

q1
p1

, . . . , qn

pn

}
< µ < 1.]
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2.9 An Application to Markov Chains

Many natural phenomena progress through various stages and can be in a variety of states at each stage.
For example, the weather in a given city progresses day by day and, on any given day, may be sunny or
rainy. Here the states are “sun” and “rain,” and the weather progresses from one state to another in daily
stages. Another example might be a football team: The stages of its evolution are the games it plays, and
the possible states are “win,” “draw,” and “loss.”

The general setup is as follows: A real conceptual “system” is run generating a sequence of outcomes.
The system evolves through a series of “stages,” and at any stage it can be in any one of a finite number of
“states.” At any given stage, the state to which it will go at the next stage depends on the past and present
history of the system—that is, on the sequence of states it has occupied to date.

Definition 2.15 Markov Chain

A Markov chain is such an evolving system wherein the state to which it will go next depends
only on its present state and does not depend on the earlier history of the system.19

Even in the case of a Markov chain, the state the system will occupy at any stage is determined only
in terms of probabilities. In other words, chance plays a role. For example, if a football team wins a
particular game, we do not know whether it will win, draw, or lose the next game. On the other hand, we
may know that the team tends to persist in winning streaks; for example, if it wins one game it may win
the next game 1

2 of the time, lose 4
10 of the time, and draw 1

10 of the time. These fractions are called the
probabilities of these various possibilities. Similarly, if the team loses, it may lose the next game with
probability 1

2 (that is, half the time), win with probability 1
4 , and draw with probability 1

4 . The probabilities
of the various outcomes after a drawn game will also be known.

We shall treat probabilities informally here: The probability that a given event will occur is the long-

run proportion of the time that the event does indeed occur. Hence, all probabilities are numbers between
0 and 1. A probability of 0 means the event is impossible and never occurs; events with probability 1 are
certain to occur.

If a Markov chain is in a particular state, the probabilities that it goes to the various states at the next
stage of its evolution are called the transition probabilities for the chain, and they are assumed to be
known quantities. To motivate the general conditions that follow, consider the following simple example.
Here the system is a man, the stages are his successive lunches, and the states are the two restaurants he
chooses.

Example 2.9.1

A man always eats lunch at one of two restaurants, A and B. He never eats at A twice in a row.
However, if he eats at B, he is three times as likely to eat at B next time as at A. Initially, he is
equally likely to eat at either restaurant.

a. What is the probability that he eats at A on the third day after the initial one?

19The name honours Andrei Andreyevich Markov (1856–1922) who was a professor at the university in St. Petersburg,
Russia.
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b. What proportion of his lunches does he eat at A?

Solution. The table of transition probabilities follows. The A column indicates that if he eats at A

on one day, he never eats there again on the next day and so is certain to go to B.

Present Lunch

A B
Next A 0 0.25

Lunch B 1 0.75

The B column shows that, if he eats at B on one day, he will eat there on the next day 3
4 of the time

and switches to A only 1
4 of the time.

The restaurant he visits on a given day is not determined. The most that we can expect is to know
the probability that he will visit A or B on that day.

Let sm =


 s

(m)
1

s
(m)
2


 denote the state vector for day m. Here s

(m)
1 denotes the probability that he

eats at A on day m, and s
(m)
2 is the probability that he eats at B on day m. It is convenient to let s0

correspond to the initial day. Because he is equally likely to eat at A or B on that initial day,

s
(0)
1 = 0.5 and s

(0)
2 = 0.5, so s0 =

[
0.5
0.5

]
. Now let

P =

[
0 0.25
1 0.75

]

denote the transition matrix. We claim that the relationship

sm+1 = Psm

holds for all integers m≥ 0. This will be derived later; for now, we use it as follows to successively
compute s1, s2, s3, . . . .

s1 = Ps0 =

[
0 0.25
1 0.75

][
0.5
0.5

]
=

[
0.125
0.875

]

s2 = Ps1 =

[
0 0.25
1 0.75

][
0.125
0.875

]
=

[
0.21875
0.78125

]

s3 = Ps2 =

[
0 0.25
1 0.75

][
0.21875
0.78125

]
=

[
0.1953125
0.8046875

]

Hence, the probability that his third lunch (after the initial one) is at A is approximately 0.195,
whereas the probability that it is at B is 0.805. If we carry these calculations on, the next state
vectors are (to five figures):

s4 =

[
0.20117
0.79883

]
s5 =

[
0.19971
0.80029

]

s6 =

[
0.20007
0.79993

]
s7 =

[
0.19998
0.80002

]

Moreover, as m increases the entries of sm get closer and closer to the corresponding entries of[
0.2
0.8

]
. Hence, in the long run, he eats 20% of his lunches at A and 80% at B.
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p1 j

p2 j

pn j

state
j

state
1

state
2

state
n

Present
State

Next
State

Example 2.9.1 incorporates most of the essential features of all Markov
chains. The general model is as follows: The system evolves through
various stages and at each stage can be in exactly one of n distinct states. It
progresses through a sequence of states as time goes on. If a Markov chain
is in state j at a particular stage of its development, the probability pi j that
it goes to state i at the next stage is called the transition probability. The
n× n matrix P =

[
pi j

]
is called the transition matrix for the Markov

chain. The situation is depicted graphically in the diagram.

We make one important assumption about the transition matrix P =[
pi j

]
: It does not depend on which stage the process is in. This assumption

means that the transition probabilities are independent of time—that is,
they do not change as time goes on. It is this assumption that distinguishes
Markov chains in the literature of this subject.

Example 2.9.2

Suppose the transition matrix of a three-state Markov chain is

Present state
1 2 3

P =




p11 p12 p13

p21 p22 p23

p31 p32 p33


 =




0.3 0.1 0.6
0.5 0.9 0.2
0.2 0.0 0.2




1
2
3

Next state

If, for example, the system is in state 2, then column 2 lists the probabilities of where it goes next.
Thus, the probability is p12 = 0.1 that it goes from state 2 to state 1, and the probability is
p22 = 0.9 that it goes from state 2 to state 2. The fact that p32 = 0 means that it is impossible for it
to go from state 2 to state 3 at the next stage.

Consider the jth column of the transition matrix P.



p1 j

p2 j
...

pn j




If the system is in state j at some stage of its evolution, the transition probabilities p1 j, p2 j, . . . , pn j

represent the fraction of the time that the system will move to state 1, state 2, . . . , state n, respectively, at
the next stage. We assume that it has to go to some state at each transition, so the sum of these probabilities
is 1:

p1 j + p2 j + · · ·+ pn j = 1 for each j

Thus, the columns of P all sum to 1 and the entries of P lie between 0 and 1. Hence P is called a stochastic

matrix.

As in Example 2.9.1, we introduce the following notation: Let s
(m)
i denote the probability that the
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system is in state i after m transitions. The n×1 matrices

sm =




s
(m)
1

s
(m)
2
...

s
(m)
n




m = 0, 1, 2, . . .

are called the state vectors for the Markov chain. Note that the sum of the entries of sm must equal 1
because the system must be in some state after m transitions. The matrix s0 is called the initial state

vector for the Markov chain and is given as part of the data of the particular chain. For example, if the

chain has only two states, then an initial vector s0 =

[
1
0

]
means that it started in state 1. If it started in

state 2, the initial vector would be s0 =

[
0
1

]
. If s0 =

[
0.5
0.5

]
, it is equally likely that the system started

in state 1 or in state 2.

Theorem 2.9.1

Let P be the transition matrix for an n-state Markov chain. If sm is the state vector at stage m, then

sm+1 = Psm

for each m = 0, 1, 2, . . . .

Heuristic Proof. Suppose that the Markov chain has been run N times, each time starting with the same
initial state vector. Recall that pi j is the proportion of the time the system goes from state j at some stage

to state i at the next stage, whereas s
(m)
i is the proportion of the time it is in state i at stage m. Hence

sm+1
i N

is (approximately) the number of times the system is in state i at stage m+1. We are going to calculate
this number another way. The system got to state i at stage m+ 1 through some other state (say state j)

at stage m. The number of times it was in state j at that stage is (approximately) s
(m)
j N, so the number of

times it got to state i via state j is pi j(s
(m)
j N). Summing over j gives the number of times the system is in

state i (at stage m+1). This is the number we calculated before, so

s
(m+1)
i N = pi1s

(m)
1 N + pi2s

(m)
2 N + · · ·+ pins

(m)
n N

Dividing by N gives s
(m+1)
i = pi1s

(m)
1 + pi2s

(m)
2 + · · ·+ pins

(m)
n for each i, and this can be expressed as the

matrix equation sm+1 = Psm.

If the initial probability vector s0 and the transition matrix P are given, Theorem 2.9.1 gives s1, s2, s3, . . . ,
one after the other, as follows:

s1 = Ps0

s2 = Ps1

s3 = Ps2
...
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Hence, the state vector sm is completely determined for each m = 0, 1, 2, . . . by P and s0.

Example 2.9.3

A wolf pack always hunts in one of three regions R1, R2, and R3. Its hunting habits are as follows:

1. If it hunts in some region one day, it is as likely as not to hunt there again the next day.

2. If it hunts in R1, it never hunts in R2 the next day.

3. If it hunts in R2 or R3, it is equally likely to hunt in each of the other regions the next day.

If the pack hunts in R1 on Monday, find the probability that it hunts there on Thursday.

Solution. The stages of this process are the successive days; the states are the three regions. The
transition matrix P is determined as follows (see the table): The first habit asserts that
p11 = p22 = p33 =

1
2 . Now column 1 displays what happens when the pack starts in R1: It never

goes to state 2, so p21 = 0 and, because the column must sum to 1, p31 =
1
2 . Column 2 describes

what happens if it starts in R2: p22 =
1
2 and p12 and p32 are equal (by habit 3), so p12 = p32 =

1
2

because the column sum must equal 1. Column 3 is filled in a similar way.

R1 R2 R3

R1
1
2

1
4

1
4

R2 0 1
2

1
4

R3
1
2

1
4

1
2

Now let Monday be the initial stage. Then s0 =




1
0
0


 because the pack hunts in R1 on that day.

Then s1, s2, and s3 describe Tuesday, Wednesday, and Thursday, respectively, and we compute
them using Theorem 2.9.1.

s1 = Ps0 =




1
2

0

1
2


 s2 = Ps1 =




3
8

1
8

4
8


 s3 = Ps2 =




11
32

6
32

15
32




Hence, the probability that the pack hunts in Region R1 on Thursday is 11
32 .
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Steady State Vector

Another phenomenon that was observed in Example 2.9.1 can be expressed in general terms. The state

vectors s0, s1, s2, . . . were calculated in that example and were found to “approach” s =

[
0.2
0.8

]
. This

means that the first component of sm becomes and remains very close to 0.2 as m becomes large, whereas
the second component gets close to 0.8 as m increases. When this is the case, we say that sm converges to
s. For large m, then, there is very little error in taking sm = s, so the long-term probability that the system
is in state 1 is 0.2, whereas the probability that it is in state 2 is 0.8. In Example 2.9.1, enough state vectors
were computed for the limiting vector s to be apparent. However, there is a better way to do this that works
in most cases.

Suppose P is the transition matrix of a Markov chain, and assume that the state vectors sm converge to
a limiting vector s. Then sm is very close to s for sufficiently large m, so sm+1 is also very close to s. Thus,
the equation sm+1 = Psm from Theorem 2.9.1 is closely approximated by

s = Ps

so it is not surprising that s should be a solution to this matrix equation. Moreover, it is easily solved
because it can be written as a system of homogeneous linear equations

(I−P)s = 0

with the entries of s as variables.

In Example 2.9.1, where P =

[
0 0.25
1 0.75

]
, the general solution to (I−P)s = 0 is s =

[
t

4t

]
, where t

is a parameter. But if we insist that the entries of S sum to 1 (as must be true of all state vectors), we find

t = 0.2 and so s =

[
0.2
0.8

]
as before.

All this is predicated on the existence of a limiting vector for the sequence of state vectors of the
Markov chain, and such a vector may not always exist. However, it does exist in one commonly occurring
situation. A stochastic matrix P is called regular if some power Pm of P has every entry greater than zero.

The matrix P =

[
0 0.25
1 0.75

]
of Example 2.9.1 is regular (in this case, each entry of P2 is positive), and

the general theorem is as follows:

Theorem 2.9.2

Let P be the transition matrix of a Markov chain and assume that P is regular. Then there is a
unique column matrix s satisfying the following conditions:

1. Ps = s.

2. The entries of s are positive and sum to 1.

Moreover, condition 1 can be written as

(I−P)s = 0
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and so gives a homogeneous system of linear equations for s. Finally, the sequence of state vectors
s0, s1, s2, . . . converges to s in the sense that if m is large enough, each entry of sm is closely
approximated by the corresponding entry of s.

This theorem will not be proved here.20

If P is the regular transition matrix of a Markov chain, the column s satisfying conditions 1 and 2 of
Theorem 2.9.2 is called the steady-state vector for the Markov chain. The entries of s are the long-term
probabilities that the chain will be in each of the various states.

Example 2.9.4

A man eats one of three soups—beef, chicken, and vegetable—each day. He never eats the same
soup two days in a row. If he eats beef soup on a certain day, he is equally likely to eat each of the
others the next day; if he does not eat beef soup, he is twice as likely to eat it the next day as the
alternative.

a. If he has beef soup one day, what is the probability that he has it again two days later?

b. What are the long-run probabilities that he eats each of the three soups?

Solution. The states here are B, C, and V , the three soups. The transition matrix P is given in the
table. (Recall that, for each state, the corresponding column lists the probabilities for the next
state.)

B C V

B 0 2
3

2
3

C 1
2 0 1

3

V 1
2

1
3 0

If he has beef soup initially, then the initial state vector is

s0 =




1
0
0




Then two days later the state vector is s2. If P is the transition matrix, then

s1 = Ps0 =
1
2




0
1
1


 , s2 = Ps1 =

1
6




4
1
1




so he eats beef soup two days later with probability 2
3 . This answers (a.) and also shows that he

eats chicken and vegetable soup each with probability 1
6 .

20The interested reader can find an elementary proof in J. Kemeny, H. Mirkil, J. Snell, and G. Thompson, Finite Mathematical

Structures (Englewood Cliffs, N.J.: Prentice-Hall, 1958).
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To find the long-run probabilities, we must find the steady-state vector s. Theorem 2.9.2 applies
because P is regular (P2 has positive entries), so s satisfies Ps = s. That is, (I−P)s = 0 where

I−P = 1
6




6 −4 −4
−3 6 −2
−3 −2 6




The solution is s =




4t

3t

3t


, where t is a parameter, and we use s =




0.4
0.3
0.3


 because the entries of

s must sum to 1. Hence, in the long run, he eats beef soup 40% of the time and eats chicken soup
and vegetable soup each 30% of the time.

Exercises for 2.9

Exercise 2.9.1 Which of the following stochastic matri-
ces is regular?




0 0 1
2

1 0 1
2

0 1 0


a.




1
2 0 1

3

1
4 1 1

3

1
4 0 1

3


b.

Exercise 2.9.2 In each case find the steady-state vector
and, assuming that it starts in state 1, find the probability
that it is in state 2 after 3 transitions.

[
0.5 0.3
0.5 0.7

]
a.




1
2 1

1
2 0


b.




0 1
2

1
4

1 0 1
4

0 1
2

1
2


c.




0.4 0.1 0.5
0.2 0.6 0.2
0.4 0.3 0.3


d.




0.8 0.0 0.2
0.1 0.6 0.1
0.1 0.4 0.7


e.




0.1 0.3 0.3
0.3 0.1 0.6
0.6 0.6 0.1


f.

Exercise 2.9.3 A fox hunts in three territories A, B, and
C. He never hunts in the same territory on two successive
days. If he hunts in A, then he hunts in C the next day. If
he hunts in B or C, he is twice as likely to hunt in A the
next day as in the other territory.

a. What proportion of his time does he spend in A, in
B, and in C?

b. If he hunts in A on Monday (C on Monday), what
is the probability that he will hunt in B on Thurs-
day?

Exercise 2.9.4 Assume that there are three social
classes—upper, middle, and lower—and that social mo-
bility behaves as follows:

1. Of the children of upper-class parents, 70% re-
main upper-class, whereas 10% become middle-
class and 20% become lower-class.

2. Of the children of middle-class parents, 80% re-
main middle-class, whereas the others are evenly
split between the upper class and the lower class.

3. For the children of lower-class parents, 60% re-
main lower-class, whereas 30% become middle-
class and 10% upper-class.

a. Find the probability that the grandchild of
lower-class parents becomes upper-class.

b. Find the long-term breakdown of society
into classes.
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Exercise 2.9.5 The prime minister says she will call
an election. This gossip is passed from person to person
with a probability p 6= 0 that the information is passed in-
correctly at any stage. Assume that when a person hears
the gossip he or she passes it to one person who does not
know. Find the long-term probability that a person will
hear that there is going to be an election.

Exercise 2.9.6 John makes it to work on time one Mon-
day out of four. On other work days his behaviour is as
follows: If he is late one day, he is twice as likely to come
to work on time the next day as to be late. If he is on time
one day, he is as likely to be late as not the next day. Find
the probability of his being late and that of his being on
time Wednesdays.

Exercise 2.9.7 Suppose you have 1¢ and match coins
with a friend. At each match you either win or lose 1¢
with equal probability. If you go broke or ever get 4¢,
you quit. Assume your friend never quits. If the states
are 0, 1, 2, 3, and 4 representing your wealth, show that
the corresponding transition matrix P is not regular. Find
the probability that you will go broke after 3 matches.

Exercise 2.9.8 A mouse is put into a maze of compart-
ments, as in the diagram. Assume that he always leaves
any compartment he enters and that he is equally likely
to take any tunnel entry.

1

2

3

4

5

a. If he starts in compartment 1, find the probability
that he is in compartment 1 again after 3 moves.

b. Find the compartment in which he spends most of
his time if he is left for a long time.

Exercise 2.9.9 If a stochastic matrix has a 1 on its main
diagonal, show that it cannot be regular. Assume it is not
1×1.

Exercise 2.9.10 If sm is the stage-m state vector for a
Markov chain, show that sm+k = Pksm holds for all m≥ 1
and k ≥ 1 (where P is the transition matrix).

Exercise 2.9.11 A stochastic matrix is doubly stochas-

tic if all the row sums also equal 1. Find the steady-state
vector for a doubly stochastic matrix.

Exercise 2.9.12 Consider the 2×2 stochastic matrix

P =

[
1− p q

p 1−q

]
,

where 0 < p < 1 and 0 < q < 1.

a. Show that 1
p+q

[
q

p

]
is the steady-state vector for

P.

b. Show that Pm converges to the matrix

1
p+q

[
q q

p p

]
by first verifying inductively that

Pm = 1
p+q

[
q q

p p

]
+ (1−p−q)m

p+q

[
p −q

−p q

]
for

m = 1, 2, . . . . (It can be shown that the sequence
of powers P, P2, P3, . . . of any regular transi-
tion matrix converges to the matrix each of whose
columns equals the steady-state vector for P.)
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Supplementary Exercises for Chapter 2

Exercise 2.1 Solve for the matrix X if:

PXQ = R;a. XP = S;b.

where P =




1 0
2 −1
0 3


, Q =

[
1 1 −1
2 0 3

]
,

R =



−1 1 −4
−4 0 −6

6 6 −6


, S =

[
1 6
3 1

]

Exercise 2.2 Consider

p(X) = X3−5X2 +11X −4I.

a. If p(U) =

[
1 3
−1 0

]
compute p(UT ).

b. If p(U) = 0 where U is n×n, find U−1 in terms of
U .

Exercise 2.3 Show that, if a (possibly nonhomoge-
neous) system of equations is consistent and has more
variables than equations, then it must have infinitely
many solutions. [Hint: Use Theorem 2.2.2 and Theo-
rem 1.3.1.]

Exercise 2.4 Assume that a system Ax = b of linear
equations has at least two distinct solutions y and z.

a. Show that xk = y+ k(y− z) is a solution for every
k.

b. Show that xk = xm implies k = m. [Hint: See Ex-
ample 2.1.7.]

c. Deduce that Ax = b has infinitely many solutions.

Exercise 2.5

a. Let A be a 3×3 matrix with all entries on and be-
low the main diagonal zero. Show that A3 = 0.

b. Generalize to the n× n case and prove your an-
swer.

Exercise 2.6 Let Ipq denote the n×n matrix with (p, q)-
entry equal to 1 and all other entries 0. Show that:

a. In = I11 + I22 + · · ·+ Inn.

b. IpqIrs =

{
Ips if q = r

0 if q 6= r
.

c. If A = [ai j] is n×n, then A = ∑n
i=1 ∑n

j=1 ai jIi j.

d. If A= [ai j], then IpqAIrs = aqrIps for all p, q, r, and
s.

Exercise 2.7 A matrix of the form aIn, where a is a
number, is called an n×n scalar matrix.

a. Show that each n×n scalar matrix commutes with
every n×n matrix.

b. Show that A is a scalar matrix if it commutes with
every n× n matrix. [Hint: See part (d.) of Exer-
cise 2.6.]

Exercise 2.8 Let M =

[
A B

C D

]
, where A, B, C, and

D are all n×n and each commutes with all the others. If
M2 = 0, show that (A+D)3 = 0. [Hint: First show that
A2 =−BC = D2 and that

B(A+D) = 0 =C(A+D).]

Exercise 2.9 If A is 2× 2, show that A−1 = AT if and

only if A =

[
cosθ sinθ

−sinθ cosθ

]
for some θ or

A =

[
cosθ sin θ

sinθ −cosθ

]
for some θ .

[Hint: If a2 + b2 = 1, then a = cos θ , b = sinθ for
some θ . Use

cos(θ −φ) = cosθ cosφ + sinθ sinφ .]

Exercise 2.10

a. If A =

[
0 1
1 0

]
, show that A2 = I.

b. What is wrong with the following argument? If
A2 = I, then A2− I = 0, so (A− I)(A + I) = 0,
whence A = I or A =−I.



144 Matrix Algebra

Exercise 2.11 Let E and F be elementary matrices ob-
tained from the identity matrix by adding multiples of
row k to rows p and q. If k 6= p and k 6= q, show that
EF = FE .

Exercise 2.12 If A is a 2× 2 real matrix, A2 = A and

AT = A, show that either A is one of

[
0 0
0 0

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
1 0
0 1

]
, or A =

[
a b

b 1−a

]

where a2 +b2 = a, − 1
2 ≤ b≤ 1

2 and b 6= 0.

Exercise 2.13 Show that the following are equivalent
for matrices P, Q:

1. P, Q, and P+Q are all invertible and

(P+Q)−1 = P−1 +Q−1

2. P is invertible and Q = PG where G2 +G+ I = 0.


